Lei Cheng, Qian Huang, Zhengqun Zhu, Yanan Li, Shuguang Ge, Longzhen Zhang, Ping Gong
{"title":"MoAGL-SA: a multi-omics adaptive integration method with graph learning and self attention for cancer subtype classification.","authors":"Lei Cheng, Qian Huang, Zhengqun Zhu, Yanan Li, Shuguang Ge, Longzhen Zhang, Ping Gong","doi":"10.1186/s12859-024-05989-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The integration of multi-omics data through deep learning has greatly improved cancer subtype classification, particularly in feature learning and multi-omics data integration. However, key challenges remain in embedding sample structure information into the feature space and designing flexible integration strategies.</p><p><strong>Results: </strong>We propose MoAGL-SA, an adaptive multi-omics integration method based on graph learning and self-attention, to address these challenges. First, patient relationship graphs are generated from each omics dataset using graph learning. Next, three-layer graph convolutional networks are employed to extract omic-specific graph embeddings. Self-attention is then used to focus on the most relevant omics, adaptively assigning weights to different graph embeddings for multi-omics integration. Finally, cancer subtypes are classified using a softmax classifier.</p><p><strong>Conclusions: </strong>Experimental results show that MoAGL-SA outperforms several popular algorithms on datasets for breast invasive carcinoma, kidney renal papillary cell carcinoma, and kidney renal clear cell carcinoma. Additionally, MoAGL-SA successfully identifies key biomarkers for breast invasive carcinoma.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"364"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05989-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The integration of multi-omics data through deep learning has greatly improved cancer subtype classification, particularly in feature learning and multi-omics data integration. However, key challenges remain in embedding sample structure information into the feature space and designing flexible integration strategies.
Results: We propose MoAGL-SA, an adaptive multi-omics integration method based on graph learning and self-attention, to address these challenges. First, patient relationship graphs are generated from each omics dataset using graph learning. Next, three-layer graph convolutional networks are employed to extract omic-specific graph embeddings. Self-attention is then used to focus on the most relevant omics, adaptively assigning weights to different graph embeddings for multi-omics integration. Finally, cancer subtypes are classified using a softmax classifier.
Conclusions: Experimental results show that MoAGL-SA outperforms several popular algorithms on datasets for breast invasive carcinoma, kidney renal papillary cell carcinoma, and kidney renal clear cell carcinoma. Additionally, MoAGL-SA successfully identifies key biomarkers for breast invasive carcinoma.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.