{"title":"A bridge point cloud databank for digital bridge understanding","authors":"Hongwei Zhang, Yanjie Zhu, Wen Xiong, C. S. Cai","doi":"10.1111/mice.13384","DOIUrl":null,"url":null,"abstract":"Despite progress in automated bridge point cloud segmentation based on deep learning, challenges persist. For instance, the absence of a public point cloud dataset specifically designed for bridge instances, and the existing bridge point cloud datasets display a lack of diversity in bridge types and inconsistency in component labeling. These factors may hinder the further improvement of accuracy in bridge point cloud segmentation. In this paper, a universal multi-type bridge point cloud databank, named BrPCD, consisting of a total of 98 point cloud data (PCD; 10 of them are obtained from scanning, and the rest is obtained by data augmentation) from small to long-span bridges, is established. Additionally, a method for augmenting bridge PCD is proposed, significantly enriching the spatial feature information of bridges within the dataset. Furthermore, based on the introduced data annotation rules, a uniform categorization of semantic labels for bridge components is implemented, enhancing the applicability of our dataset across various semantic segmentation tasks for different types of bridges. A benchmark testing was conducted on the BrPCD using the PointNet model. The segmentation results indicate that the parameters learned through the BrPCD enable accurate segmentation at the level of various types of bridge components. In other words, the BrPCD can function as a universal dataset, applicable for testing various networks aimed at bridge point cloud segmentation.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"19 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13384","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite progress in automated bridge point cloud segmentation based on deep learning, challenges persist. For instance, the absence of a public point cloud dataset specifically designed for bridge instances, and the existing bridge point cloud datasets display a lack of diversity in bridge types and inconsistency in component labeling. These factors may hinder the further improvement of accuracy in bridge point cloud segmentation. In this paper, a universal multi-type bridge point cloud databank, named BrPCD, consisting of a total of 98 point cloud data (PCD; 10 of them are obtained from scanning, and the rest is obtained by data augmentation) from small to long-span bridges, is established. Additionally, a method for augmenting bridge PCD is proposed, significantly enriching the spatial feature information of bridges within the dataset. Furthermore, based on the introduced data annotation rules, a uniform categorization of semantic labels for bridge components is implemented, enhancing the applicability of our dataset across various semantic segmentation tasks for different types of bridges. A benchmark testing was conducted on the BrPCD using the PointNet model. The segmentation results indicate that the parameters learned through the BrPCD enable accurate segmentation at the level of various types of bridge components. In other words, the BrPCD can function as a universal dataset, applicable for testing various networks aimed at bridge point cloud segmentation.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.