Atomically intimate assembly of dual metal–oxide interfaces for tandem conversion of syngas to ethanol

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-11-25 DOI:10.1038/s41565-024-01824-w
Shang Li, Li Feng, Hengwei Wang, Yue Lin, Zhihu Sun, Lulu Xu, Yuxing Xu, Xinyu Liu, Wei-Xue Li, Shiqiang Wei, Jin-Xun Liu, Junling Lu
{"title":"Atomically intimate assembly of dual metal–oxide interfaces for tandem conversion of syngas to ethanol","authors":"Shang Li, Li Feng, Hengwei Wang, Yue Lin, Zhihu Sun, Lulu Xu, Yuxing Xu, Xinyu Liu, Wei-Xue Li, Shiqiang Wei, Jin-Xun Liu, Junling Lu","doi":"10.1038/s41565-024-01824-w","DOIUrl":null,"url":null,"abstract":"<p>Selective conversion of syngas to value-added higher alcohols (containing two or more carbon atoms), particularly to a specific alcohol, is of great interest but remains challenging. Here we show that atomically intimate assembly of FeO<sub><i>x</i></sub>-Rh-ZrO<sub>2</sub> dual interfaces by selectively architecting highly dispersed FeO<sub><i>x</i></sub> on ultrafine raft-like Rh clusters supported on tetragonal zirconia enables highly efficient tandem conversion of syngas to ethanol. The ethanol selectivity in oxygenates reached ~90% at CO conversion up to 51%, along with a markedly high space-time yield of ethanol of 668.2 mg g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>. In situ spectroscopic characterization and theoretical calculations reveal that Rh-ZrO<sub>2</sub> interface promotes dissociative CO activation into CH<sub><i>x</i></sub> through a formate pathway, while the adjacent Rh-FeO<sub><i>x</i></sub> interface accelerates subsequent C–C coupling via nondissociative CO insertion. Consequently, these dual interfaces in atomic-scale proximity with complementary functionalities synergistically boost the exclusive formation of ethanol with exceptional productivity in a tandem manner.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"80 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01824-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Selective conversion of syngas to value-added higher alcohols (containing two or more carbon atoms), particularly to a specific alcohol, is of great interest but remains challenging. Here we show that atomically intimate assembly of FeOx-Rh-ZrO2 dual interfaces by selectively architecting highly dispersed FeOx on ultrafine raft-like Rh clusters supported on tetragonal zirconia enables highly efficient tandem conversion of syngas to ethanol. The ethanol selectivity in oxygenates reached ~90% at CO conversion up to 51%, along with a markedly high space-time yield of ethanol of 668.2 mg gcat−1 h−1. In situ spectroscopic characterization and theoretical calculations reveal that Rh-ZrO2 interface promotes dissociative CO activation into CHx through a formate pathway, while the adjacent Rh-FeOx interface accelerates subsequent C–C coupling via nondissociative CO insertion. Consequently, these dual interfaces in atomic-scale proximity with complementary functionalities synergistically boost the exclusive formation of ethanol with exceptional productivity in a tandem manner.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于串联转化合成气为乙醇的双金属氧化物界面的原子紧密装配
选择性地将合成气转化为高附加值的高级醇类(含两个或两个以上碳原子),尤其是转化为特定醇类,是人们非常感兴趣的问题,但仍然具有挑战性。在这里,我们展示了通过选择性地在四方氧化锆上支撑的超细筏状 Rh 簇上构建高度分散的 FeOx,从而在原子上紧密装配 FeOx-Rh-ZrO2 双界面,实现了合成气到乙醇的高效串联转化。在一氧化碳转化率高达 51% 时,乙醇在含氧化合物中的选择性达到约 90%,同时乙醇的时空产率高达 668.2 mg gcat-1 h-1。原位光谱表征和理论计算显示,Rh-ZrO2 界面通过甲酸途径促进解离一氧化碳活化为 CHx,而相邻的 Rh-FeOx 界面则通过非解离一氧化碳插入加速随后的 C-C 耦合。因此,这些具有互补功能的双界面在原子尺度上相互靠近,以串联方式协同促进了乙醇的独家形成,并具有极高的生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
Nanoscale gradient interface for efficient heat transfer Quantum dots are beginning to lase in the blue Superionic conducting vacancy-rich β-Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries Atomically intimate assembly of dual metal–oxide interfaces for tandem conversion of syngas to ethanol Organic radio-afterglow nanoprobes for cancer theranostics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1