Protective Coating for Stable Cycling of Li-Metal Batteries Based on Cellulose and Single-Ion Conducting Polymer

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-11-25 DOI:10.1021/acsami.4c13335
Mariana Vargas Ordaz, Nejc Pavlin, Matteo Gastaldi, Claudio Gerbaldi, Robert Dominko
{"title":"Protective Coating for Stable Cycling of Li-Metal Batteries Based on Cellulose and Single-Ion Conducting Polymer","authors":"Mariana Vargas Ordaz, Nejc Pavlin, Matteo Gastaldi, Claudio Gerbaldi, Robert Dominko","doi":"10.1021/acsami.4c13335","DOIUrl":null,"url":null,"abstract":"The thermodynamically unstable interface between metallic lithium and electrolyte poses a major problem for the massive commercialization of Li-metal batteries. In this study, we propose the use of a multicomponent protective coating based on cellulose modified with dimethylthexylsilyl group (TDMSC), single-ion conducting polymer P(LiMTFSI), and LiNO<sub>3</sub> (TDMSC-P(LiMTFSI)-LiNO<sub>3</sub>, namely PTL). The coating shows its positive effect by increasing the Coulombic efficiency in Li || Cu cells from 95.9 and 98.6% for bare Li, to &gt;99.3% for Li coated (Li@PTL), with 1 M LiFSI in FEC:DEC and 1 M LiFSI in DME electrolyte, respectively. Symmetrical Li || Li PTL-coated cells exhibit a much more prolonged and stable cycling with a slower increase in overpotential compared to bare Li cells. Li@PTL anodes enable improved cycling of Li@PTL/LFP cells compared to noncoated cells in liquid electrolytes. In this respect, inhibition of high surface area lithium growth is confirmed through postcycling scanning electron microscopy. Remarkably, dendrite-free galvanostatic cycling is demonstrated in laboratory-scale solid-state battery cells assembled with LFP composite cathode (catholyte configuration with PEO + LiTFSI as ionically conducting binder) and a cross-linked PEO-based solid polymer electrolyte. The PTL protective coating enables improved stability of Li metal batteries in combination with smooth transport of Li<sup>+</sup> at the electrode–electrolyte interface and homogeneous lithium coating, highlighting its promising prospects in enhancing the performance and safety of lithium metal batteries by properly tuning the synergy between the coating components.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"183 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13335","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The thermodynamically unstable interface between metallic lithium and electrolyte poses a major problem for the massive commercialization of Li-metal batteries. In this study, we propose the use of a multicomponent protective coating based on cellulose modified with dimethylthexylsilyl group (TDMSC), single-ion conducting polymer P(LiMTFSI), and LiNO3 (TDMSC-P(LiMTFSI)-LiNO3, namely PTL). The coating shows its positive effect by increasing the Coulombic efficiency in Li || Cu cells from 95.9 and 98.6% for bare Li, to >99.3% for Li coated (Li@PTL), with 1 M LiFSI in FEC:DEC and 1 M LiFSI in DME electrolyte, respectively. Symmetrical Li || Li PTL-coated cells exhibit a much more prolonged and stable cycling with a slower increase in overpotential compared to bare Li cells. Li@PTL anodes enable improved cycling of Li@PTL/LFP cells compared to noncoated cells in liquid electrolytes. In this respect, inhibition of high surface area lithium growth is confirmed through postcycling scanning electron microscopy. Remarkably, dendrite-free galvanostatic cycling is demonstrated in laboratory-scale solid-state battery cells assembled with LFP composite cathode (catholyte configuration with PEO + LiTFSI as ionically conducting binder) and a cross-linked PEO-based solid polymer electrolyte. The PTL protective coating enables improved stability of Li metal batteries in combination with smooth transport of Li+ at the electrode–electrolyte interface and homogeneous lithium coating, highlighting its promising prospects in enhancing the performance and safety of lithium metal batteries by properly tuning the synergy between the coating components.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纤维素和单离子导电聚合物的锂金属电池稳定循环保护涂层
金属锂与电解液之间的热力学不稳定界面是金属锂电池大规模商业化的一个主要问题。在本研究中,我们提出了一种多组分保护涂层的使用方法,该涂层基于二甲基己硅基改性纤维素(TDMSC)、单离子导电聚合物 P(LiMTFSI) 和 LiNO3(TDMSC-P(LiMTFSI)-LiNO3,即 PTL)。涂层显示了其积极作用,锂||铜电池的库仑效率分别从裸锂电池的 95.9% 和 98.6% 提高到锂涂层(Li@PTL)的 >99.3%,FEC:DEC 中的 1 M LiFSI 和 DME 电解液中的 1 M LiFSI 分别为 95.9% 和 98.6%。与裸锂电池相比,Li || Li PTL 涂层对称电池的循环时间更长、更稳定,过电位增加更慢。与液态电解质中的非涂层电池相比,Li@PTL 阳极可改善 Li@PTL/LFP 电池的循环。在这方面,循环后扫描电子显微镜证实了对高表面积锂生长的抑制作用。值得注意的是,在实验室规模的固态电池中,使用 LFP 复合阴极(阴极电解质配置,PEO + LiTFSI 作为离子导电粘合剂)和交联 PEO 固体聚合物电解质组装的电池实现了无树枝状晶粒的电静力循环。PTL 保护涂层能够提高金属锂电池的稳定性,同时使 Li+ 在电极-电解质界面顺利传输,并实现均匀的锂涂层,通过适当调整涂层成分之间的协同作用,在提高金属锂电池的性能和安全性方面具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Enhanced Low-Humidity Performance of Polymer Exchange Membrane Fuel Cells via Membrane Surface Engineering Spectrally Narrow Blue-Light Emission from Nonstoichiometric AgGaS2 Quantum Dots for Application to Light-Emitting Diodes Electrochemical Properties of Powdery LiNi1/3Mn1/3Co1/3O2 Electrodes with Styrene-Acrylic-Rubber-Based Latex Binders at High Voltage Double-Layered Electrospun Nanofiber Filter for the Simultaneous Removal of Urea and Ammonium from Blood Protective Coating for Stable Cycling of Li-Metal Batteries Based on Cellulose and Single-Ion Conducting Polymer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1