{"title":"Reverse deformation design for bending control in welding of ring stiffeners","authors":"Hanling Wu , Huiyue Dong , Yingjie Guo , Fei Yuan , Yinglin Ke","doi":"10.1016/j.ijpvp.2024.105362","DOIUrl":null,"url":null,"abstract":"<div><div>After Double Side Arc Welding (DSAW), the ring stiffener undergoes significant radial bending deformation due to the release of residual plastic stress, which severely impacts the dimensional quality of the welded component. This type of stress release-induced deformation is difficult to control through the application of external constraints. In this paper, a method for designing reverse deformation to compensate for bending deformation is proposed, based on the Distribution Function based Inherent Strain Method (DFISM). By leveraging the rapid calculations from DFISM and parametric modeling, welding deformation samples of ring stiffeners of different sizes were obtained in sample, and the optimal reverse deformation amount for the ring stiffener was determined using parameter evaluation criteria. The compensation effect of the designed reverse deformation was tested through DSAW experiments, where the calculation and experimental error were less than 1.0 mm (7.8 % of the total deformation), and the maximum error between the welded ring stiffener and the theoretical profile after reverse deformation design was within 1.2 mm (0.03 % of the theoretical radius). The Reverse Deformation Design Method (RDDM), based on rapid calculations and parametric modeling, effectively compensates for the bending deformation of the ring stiffener.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"213 ","pages":"Article 105362"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124002400","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
After Double Side Arc Welding (DSAW), the ring stiffener undergoes significant radial bending deformation due to the release of residual plastic stress, which severely impacts the dimensional quality of the welded component. This type of stress release-induced deformation is difficult to control through the application of external constraints. In this paper, a method for designing reverse deformation to compensate for bending deformation is proposed, based on the Distribution Function based Inherent Strain Method (DFISM). By leveraging the rapid calculations from DFISM and parametric modeling, welding deformation samples of ring stiffeners of different sizes were obtained in sample, and the optimal reverse deformation amount for the ring stiffener was determined using parameter evaluation criteria. The compensation effect of the designed reverse deformation was tested through DSAW experiments, where the calculation and experimental error were less than 1.0 mm (7.8 % of the total deformation), and the maximum error between the welded ring stiffener and the theoretical profile after reverse deformation design was within 1.2 mm (0.03 % of the theoretical radius). The Reverse Deformation Design Method (RDDM), based on rapid calculations and parametric modeling, effectively compensates for the bending deformation of the ring stiffener.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.