Valorisation of anaerobic digestate to nutrients and humic substances

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2024-11-23 DOI:10.1016/j.wasman.2024.11.033
Joni Lehto, Eliisa Järvelä
{"title":"Valorisation of anaerobic digestate to nutrients and humic substances","authors":"Joni Lehto,&nbsp;Eliisa Järvelä","doi":"10.1016/j.wasman.2024.11.033","DOIUrl":null,"url":null,"abstract":"<div><div>Nutrient-rich product fractions were produced from abundant, yet currently chemically under-utilized nutrients-containing feedstock, residual digestate formed during anaerobic digestion (AD). The objective of this research was to experiment individually three sub-processes, <em>i.e.,</em> precipitation of organic humic substances and phosphorus from the digestate reject water, liberation of reject water nitrogen as ammonia gas during the lime treatment and recovering it with membrane contactor (MC), and finally novel utilization of ammonia for leaching nitrogen-enriched organic substances from the digestate residue. With calcium precipitation, the main part of the phosphorus and significant part of organic material could be precipitated, and simultaneously ammonium could be liberated with good yield as ammonia gas, so that it could be recovered by MC. On the other hand, ammonia could be used with promising results as an extraction media, by which the solubility of the organic matter and the content of nitrogen attached to the soluble organic fraction could be significantly increased. Hence, all sub-processes were found to achieve their goals and digestate could be successfully utilized as a feedstock for manufacture of varying nutrient-rich products. Combining these three subprocesses together enables the development of novel cascading process concept, in which treated product stream can be used in the next process step and in which each subprocess step benefits the next.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"192 ","pages":"Pages 39-46"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X24006007","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nutrient-rich product fractions were produced from abundant, yet currently chemically under-utilized nutrients-containing feedstock, residual digestate formed during anaerobic digestion (AD). The objective of this research was to experiment individually three sub-processes, i.e., precipitation of organic humic substances and phosphorus from the digestate reject water, liberation of reject water nitrogen as ammonia gas during the lime treatment and recovering it with membrane contactor (MC), and finally novel utilization of ammonia for leaching nitrogen-enriched organic substances from the digestate residue. With calcium precipitation, the main part of the phosphorus and significant part of organic material could be precipitated, and simultaneously ammonium could be liberated with good yield as ammonia gas, so that it could be recovered by MC. On the other hand, ammonia could be used with promising results as an extraction media, by which the solubility of the organic matter and the content of nitrogen attached to the soluble organic fraction could be significantly increased. Hence, all sub-processes were found to achieve their goals and digestate could be successfully utilized as a feedstock for manufacture of varying nutrient-rich products. Combining these three subprocesses together enables the development of novel cascading process concept, in which treated product stream can be used in the next process step and in which each subprocess step benefits the next.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
Assessing the resource potential of paper and board in lightweight packaging waste sorting plants through manual analysis and sensor-based material flow monitoring. Path-dependencies in the transition to sustainable biowaste valorization: Lessons from a socio-technical analysis of Sweden and Greece Polyvinylidene fluoride binder removal through subcritical methanol for efficient liberation of cathode materials from lithium-ion batteries Unlocking the potential of vinegar residue: A novel biorefining strategy for amino acid-enriched xylooligosaccharides and humic-like acid Valorisation of anaerobic digestate to nutrients and humic substances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1