Understanding the solute segregation and redistribution behavior in rapidly solidified binary Ti-X alloys fabricated through non-equilibrium laser processing
Zimeng Ye , Kexin Zhao , Zerong Yu , Konda Gokuldoss Prashanth , Fengying Zhang , Yuqi He , Yijie Peng , Wenlu Wu , Hua Tan
{"title":"Understanding the solute segregation and redistribution behavior in rapidly solidified binary Ti-X alloys fabricated through non-equilibrium laser processing","authors":"Zimeng Ye , Kexin Zhao , Zerong Yu , Konda Gokuldoss Prashanth , Fengying Zhang , Yuqi He , Yijie Peng , Wenlu Wu , Hua Tan","doi":"10.1016/j.addma.2024.104561","DOIUrl":null,"url":null,"abstract":"<div><div>The solute segregation and redistribution during non-equilibrium rapid solidification using laser additive manufacturing (LAM) process directly influence the microstructure morphology and phase distribution, which in turn affects their mechanical properties. In this work, a laser micro-alloying strategy was utilized to preserve the original solidification microstructure in the considered Ti-9Mo, Ti-9Cr, Ti-9Fe, and Ti-9Ni (wt%) alloys. The addition of different β-stabilizing elements (Mo, Cr, Fe, and Ni) resulted in distinct microstructures: Ti-9Mo and Ti-9Cr alloys exhibited larger grains (∼502 μm and ∼733 μm) and cellular morphologies due to minimum constitutional undercooling at the solid-liquid interface. Because of the increased constitutional undercooling, the Ti-9Fe grains are significantly refined (∼398 μm), showing a dendritic morphology with elongated primary dendrite arms. Ti-9Ni exhibited the highest constitutional undercooling, forming equiaxed dendrites. However, due to the significant consumption of solute atoms by the interdendritic eutectic phase Ti<sub>2</sub>Ni, the grains did not further refine (∼396 μm). Combined with the temperature field simulation, the solidification conditions of the alloys were determined. In addition, based on the solute partitioning coefficients (<em>k</em>), the different solute redistribution and diffusion behaviors at the solid-liquid interface during the laser micro-alloying process of Ti-9Mo with <em>k</em> > 1 and Ti-9Cr with <em>k</em> < 1 were elucidated, providing essential insights into the formation of typical cellular morphology and enhanced Mo enrichment phenomenon in the Ti-9Mo alloy.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"96 ","pages":"Article 104561"},"PeriodicalIF":10.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424006079","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The solute segregation and redistribution during non-equilibrium rapid solidification using laser additive manufacturing (LAM) process directly influence the microstructure morphology and phase distribution, which in turn affects their mechanical properties. In this work, a laser micro-alloying strategy was utilized to preserve the original solidification microstructure in the considered Ti-9Mo, Ti-9Cr, Ti-9Fe, and Ti-9Ni (wt%) alloys. The addition of different β-stabilizing elements (Mo, Cr, Fe, and Ni) resulted in distinct microstructures: Ti-9Mo and Ti-9Cr alloys exhibited larger grains (∼502 μm and ∼733 μm) and cellular morphologies due to minimum constitutional undercooling at the solid-liquid interface. Because of the increased constitutional undercooling, the Ti-9Fe grains are significantly refined (∼398 μm), showing a dendritic morphology with elongated primary dendrite arms. Ti-9Ni exhibited the highest constitutional undercooling, forming equiaxed dendrites. However, due to the significant consumption of solute atoms by the interdendritic eutectic phase Ti2Ni, the grains did not further refine (∼396 μm). Combined with the temperature field simulation, the solidification conditions of the alloys were determined. In addition, based on the solute partitioning coefficients (k), the different solute redistribution and diffusion behaviors at the solid-liquid interface during the laser micro-alloying process of Ti-9Mo with k > 1 and Ti-9Cr with k < 1 were elucidated, providing essential insights into the formation of typical cellular morphology and enhanced Mo enrichment phenomenon in the Ti-9Mo alloy.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.