An efficient multi-criteria cell selection handover mechanism for Vehicle-to-Everything (V2X)

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computers & Electrical Engineering Pub Date : 2024-11-18 DOI:10.1016/j.compeleceng.2024.109884
Faiza Rashid Ammar Al Harthi, Abderezak Touzene, Nasser Alzidi, Faiza Al Salti
{"title":"An efficient multi-criteria cell selection handover mechanism for Vehicle-to-Everything (V2X)","authors":"Faiza Rashid Ammar Al Harthi,&nbsp;Abderezak Touzene,&nbsp;Nasser Alzidi,&nbsp;Faiza Al Salti","doi":"10.1016/j.compeleceng.2024.109884","DOIUrl":null,"url":null,"abstract":"<div><div>The deployment of cost-effective small cells to create ultra-high-density (UDN) heterogeneous networks in 5 G networks has emerged as a potentially effective strategy for enhancing network coverage and optimising resource allocation. However, UDN makes network selection more challenging due to the densification of small cells in 5 G and their heterogeneity. This research presents an efficient small cell selection handover mechanism for 5 G V2X networks. The proposed mechanism uses a Multiple Criteria Decision Making (MCDM) technique for the handover best cell selection to improve the overall performance. The proposed handover mechanism is context sensitive and it adapts to changing network conditions, ensuring efficient handovers during high-speed vehicular movement. Furthermore, the mechanism incorporates the concept of small cell Stay Time, which may reduce unnecessary handovers. The simulation results reveal that the proposed mechanism outperforms traditional handover techniques and Handover Decision-making Algorithm (HDMA) mechanisms significantly in terms of reducing the number of frequent handovers, minimizing link failures, and minimizing ping-pong with an average of 66 % reduction for unnecessary handovers.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109884"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624008103","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The deployment of cost-effective small cells to create ultra-high-density (UDN) heterogeneous networks in 5 G networks has emerged as a potentially effective strategy for enhancing network coverage and optimising resource allocation. However, UDN makes network selection more challenging due to the densification of small cells in 5 G and their heterogeneity. This research presents an efficient small cell selection handover mechanism for 5 G V2X networks. The proposed mechanism uses a Multiple Criteria Decision Making (MCDM) technique for the handover best cell selection to improve the overall performance. The proposed handover mechanism is context sensitive and it adapts to changing network conditions, ensuring efficient handovers during high-speed vehicular movement. Furthermore, the mechanism incorporates the concept of small cell Stay Time, which may reduce unnecessary handovers. The simulation results reveal that the proposed mechanism outperforms traditional handover techniques and Handover Decision-making Algorithm (HDMA) mechanisms significantly in terms of reducing the number of frequent handovers, minimizing link failures, and minimizing ping-pong with an average of 66 % reduction for unnecessary handovers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车对物 (V2X) 的高效多标准小区选择切换机制
在 5 G 网络中部署经济高效的小基站以创建超高密度(UDN)异构网络,已成为增强网络覆盖和优化资源分配的潜在有效策略。然而,由于 5 G 小蜂窝的密集性和异质性,UDN 使得网络选择更具挑战性。本研究为 5 G V2X 网络提出了一种高效的小基站选择切换机制。该机制采用多标准决策(MCDM)技术进行最佳小区切换选择,以提高整体性能。所提出的切换机制对上下文敏感,能适应不断变化的网络条件,确保在车辆高速行驶过程中实现高效切换。此外,该机制还结合了小蜂窝停留时间的概念,可减少不必要的切换。仿真结果表明,所提出的机制在减少频繁切换次数、减少链路故障和减少乒乓现象方面明显优于传统的切换技术和切换决策算法(Handover Decision-making Algorithm,HDMA)机制,平均减少了 66% 的不必要切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
期刊最新文献
Editorial Board Improved perturbation based hybrid firefly algorithm and long short-term memory based intelligent security model for IoT network intrusion detection iZKP-AKA: A secure and improved ZKP-AKA protocol for sustainable healthcare BlockGuard: Advancing digital copyright integrity with blockchain technique Reliability-based preventive maintenance scheduling in power generation systems: A lévy flight and chaotic local search-based discrete mayfly algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1