High temperature heat pumps for industrial heating processes using water as refrigerant

IF 9 1区 工程技术 Q1 ENERGY & FUELS Energy Pub Date : 2024-11-16 DOI:10.1016/j.energy.2024.133847
Ruzhu Wang, Hongzhi Yan, Di Wu, Jiatong Jiang, Yixiu Dong
{"title":"High temperature heat pumps for industrial heating processes using water as refrigerant","authors":"Ruzhu Wang,&nbsp;Hongzhi Yan,&nbsp;Di Wu,&nbsp;Jiatong Jiang,&nbsp;Yixiu Dong","doi":"10.1016/j.energy.2024.133847","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature heat pumps (HTHPs) provide a promising approach to reducing CO<sub>2</sub> emissions in industrial heating applications. However, developing large-scale, high-temperature-output, and large temperature-lift heat pumps that utilize low-GWP refrigerants remains a challenge. Natural working fluids, particularly water, show potential due to their exceptional thermodynamic properties and environmental friendliness. Our findings indicate that by employing water as a refrigerant, high-temperature heat pumps can achieve a significant temperature lift of up to 100 °C while maintaining a satisfactory coefficient of performance (COP). Additionally, these systems demonstrate high flexibility, enabling them to operate as closed-cycles, hybrid closed and open cycles, or hybrid vapor compression and absorption systems. Furthermore, we identify feasible matching strategies for industrial high-temperature heat pumps, focusing on working fluids, components, and cycle structures, with variables such as compressor type, heating temperature, and capacity. Through this research, we highlight the unique performance advantages of water across a 100 °C temperature range and propose detailed design sketches centered on water, capable of achieving large temperature lifts and high-temperature outputs. These include compression cycles, absorption cycles, and mechanical vapor compression cycles, with particular attention to closed and open cycle combinations. Moreover, we emphasize the research gap in current industrial heat pump technologies, providing a forward-looking technological perspective on heat pumps as a key component in further industrial decarbonization.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133847"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224036259","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature heat pumps (HTHPs) provide a promising approach to reducing CO2 emissions in industrial heating applications. However, developing large-scale, high-temperature-output, and large temperature-lift heat pumps that utilize low-GWP refrigerants remains a challenge. Natural working fluids, particularly water, show potential due to their exceptional thermodynamic properties and environmental friendliness. Our findings indicate that by employing water as a refrigerant, high-temperature heat pumps can achieve a significant temperature lift of up to 100 °C while maintaining a satisfactory coefficient of performance (COP). Additionally, these systems demonstrate high flexibility, enabling them to operate as closed-cycles, hybrid closed and open cycles, or hybrid vapor compression and absorption systems. Furthermore, we identify feasible matching strategies for industrial high-temperature heat pumps, focusing on working fluids, components, and cycle structures, with variables such as compressor type, heating temperature, and capacity. Through this research, we highlight the unique performance advantages of water across a 100 °C temperature range and propose detailed design sketches centered on water, capable of achieving large temperature lifts and high-temperature outputs. These include compression cycles, absorption cycles, and mechanical vapor compression cycles, with particular attention to closed and open cycle combinations. Moreover, we emphasize the research gap in current industrial heat pump technologies, providing a forward-looking technological perspective on heat pumps as a key component in further industrial decarbonization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用水作为制冷剂的工业加热过程高温热泵
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
期刊最新文献
High temperature heat pumps for industrial heating processes using water as refrigerant Exploration on deep pulverized coal activation and ultra-low NOx emission strategies with novel purifying-combustion technology Collaborative strategy towards a resilient urban energy system: Evidence from a tripartite evolutionary game model Household, sociodemographic, building and land cover factors affecting residential summer electricity consumption: A systematic statistical study in Phoenix, AZ Economic benefits for the metallurgical industry from co-combusting pyrolysis gas from waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1