A semi-supervised approach for breast tumor segmentation using sparse transformer attention UNet

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-11-10 DOI:10.1016/j.patrec.2024.11.008
Muhammad Wajid , Ahmed Iqbal , Isra Malik , Syed Jawad Hussain , Yasir Jan
{"title":"A semi-supervised approach for breast tumor segmentation using sparse transformer attention UNet","authors":"Muhammad Wajid ,&nbsp;Ahmed Iqbal ,&nbsp;Isra Malik ,&nbsp;Syed Jawad Hussain ,&nbsp;Yasir Jan","doi":"10.1016/j.patrec.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate segmentation of breast tumors, especially in younger women, remains a significant challenge in cancer research. Ultrasound imaging, a non-invasive screening method, relies on tumor characteristics such as size and texture, which are crucial for clinicians to make precise diagnoses. However, the lack of annotated datasets necessitates the development of advanced deep learning models. While traditional U-Net models, based on Convolutional Neural Networks (CNNs), excel at local feature extraction, they struggle to capture long-range dependencies. Transformer models address this limitation but are computationally demanding and require large, annotated dataset. To overcome these challenges, we propose a semi-supervised learning approach with three components: The Diverse Image Generation Network (DIGN), the Adaptive Probability Mapping Network (APMN), and STA-UNet (Sparse Transformer Attention UNet), a novel architecture designed to efficiently capture long-range dependencies while reducing computational cost. Experimental results demonstrate that STA-UNet significantly outperforms traditional U-Net models. On the Mendeley dataset, STA-UNet achieves a 4.10 % improvement in the Jaccard Similarity Coefficient (JSC), a 3.84 % increase in the Dice Similarity Coefficient (DSC), and a 38.00 % reduction in Hausdorff Distance (HD). Similarly, on the SIIT dataset, STA-UNet shows a 1.92 % increase in JSC, a 2.02 % improvement in DSC, and a 30.58 % reduction in HD.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"187 ","pages":"Pages 63-72"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003143","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate segmentation of breast tumors, especially in younger women, remains a significant challenge in cancer research. Ultrasound imaging, a non-invasive screening method, relies on tumor characteristics such as size and texture, which are crucial for clinicians to make precise diagnoses. However, the lack of annotated datasets necessitates the development of advanced deep learning models. While traditional U-Net models, based on Convolutional Neural Networks (CNNs), excel at local feature extraction, they struggle to capture long-range dependencies. Transformer models address this limitation but are computationally demanding and require large, annotated dataset. To overcome these challenges, we propose a semi-supervised learning approach with three components: The Diverse Image Generation Network (DIGN), the Adaptive Probability Mapping Network (APMN), and STA-UNet (Sparse Transformer Attention UNet), a novel architecture designed to efficiently capture long-range dependencies while reducing computational cost. Experimental results demonstrate that STA-UNet significantly outperforms traditional U-Net models. On the Mendeley dataset, STA-UNet achieves a 4.10 % improvement in the Jaccard Similarity Coefficient (JSC), a 3.84 % increase in the Dice Similarity Coefficient (DSC), and a 38.00 % reduction in Hausdorff Distance (HD). Similarly, on the SIIT dataset, STA-UNet shows a 1.92 % increase in JSC, a 2.02 % improvement in DSC, and a 30.58 % reduction in HD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用稀疏变换器注意 UNet 的半监督乳腺肿瘤分割方法
准确分割乳腺肿瘤,尤其是年轻女性的乳腺肿瘤,仍然是癌症研究中的一项重大挑战。超声波成像作为一种无创筛查方法,依赖于肿瘤的大小和纹理等特征,这些特征对于临床医生做出精确诊断至关重要。然而,由于缺乏注释数据集,因此有必要开发先进的深度学习模型。虽然基于卷积神经网络(CNN)的传统 U-Net 模型在局部特征提取方面表现出色,但在捕捉长程依赖性方面却很吃力。变换器模型解决了这一局限性,但对计算要求较高,而且需要大型注释数据集。为了克服这些挑战,我们提出了一种由三个部分组成的半监督学习方法:多样化图像生成网络(DIGN)、自适应概率映射网络(APMN)和稀疏变换器注意网络(STA-UNet),这是一种新颖的架构,旨在有效捕捉长距离依赖关系,同时降低计算成本。实验结果表明,STA-UNet 明显优于传统的 U-Net 模型。在 Mendeley 数据集上,STA-UNet 的 Jaccard 相似性系数(JSC)提高了 4.10%,Dice 相似性系数(DSC)提高了 3.84%,Hausdorff 距离(HD)减少了 38.00%。同样,在 SIIT 数据集上,STA-UNet 显示 JSC 增加了 1.92%,DSC 提高了 2.02%,HD 减少了 30.58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Bilateral symmetry-based augmentation method for improved tooth segmentation in panoramic X-rays GAF-Net: A new automated segmentation method based on multiscale feature fusion and feedback module Segmentation of MRI tumors and pelvic anatomy via cGAN-synthesized data and attention-enhanced U-Net Multichannel image classification based on adaptive attribute profiles Incremental component tree contour computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1