{"title":"Universal relations for electroactive solids undergoing shear and triaxial extension","authors":"K.R. Rajagopal , A. Wineman","doi":"10.1016/j.ijnonlinmec.2024.104954","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we establish universal relations for a cube of a nonlinear elastic isotropic electroactive solid that undergoes a homogeneous deformation due to shear tractions but no normal tractions. When there is no electric field, in addition to a shearing deformation, the cube’s dimensions change because of the Poynting effect. In this work, we study the influence of the electric field vector on these dimensional changes using a previously developed constitutive equation for nonlinear electroactive solids. Expressions are obtained for these dimensional changes that depend the amount of shear for different directions of the electric field vector relative to the shearing direction. In addition, universal relations are obtained when there is no electric field and are extended for different electric field directions.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"169 ","pages":"Article 104954"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224003196","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article we establish universal relations for a cube of a nonlinear elastic isotropic electroactive solid that undergoes a homogeneous deformation due to shear tractions but no normal tractions. When there is no electric field, in addition to a shearing deformation, the cube’s dimensions change because of the Poynting effect. In this work, we study the influence of the electric field vector on these dimensional changes using a previously developed constitutive equation for nonlinear electroactive solids. Expressions are obtained for these dimensional changes that depend the amount of shear for different directions of the electric field vector relative to the shearing direction. In addition, universal relations are obtained when there is no electric field and are extended for different electric field directions.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.