Transitions to chaos, fractal basin boundaries, bursting and mixed modes oscillations in a cubic-quintic-septic duffing oscillator with four wells of equal depth

IF 2.8 3区 工程技术 Q2 MECHANICS International Journal of Non-Linear Mechanics Pub Date : 2025-02-19 DOI:10.1016/j.ijnonlinmec.2025.105055
Pyrrhus Dior Landry Kamseu , Hervé Simo , Paul Woafo , Jan Awrejcewicz
{"title":"Transitions to chaos, fractal basin boundaries, bursting and mixed modes oscillations in a cubic-quintic-septic duffing oscillator with four wells of equal depth","authors":"Pyrrhus Dior Landry Kamseu ,&nbsp;Hervé Simo ,&nbsp;Paul Woafo ,&nbsp;Jan Awrejcewicz","doi":"10.1016/j.ijnonlinmec.2025.105055","DOIUrl":null,"url":null,"abstract":"<div><div>This work analyses the various dynamical states that can be delivered by a sinusoidally excited cubic-quintic-septic Duffing oscillator with a potential having four wells of equal depth and three bumps of the same level using mathematical methods and numerical simulation based on the fourth order Runge-Kutta method. This special potential can be obtained in mechanics using magnets with appropriate magnetic inductions placed appropriately close to a line on which a magnetic body is moving. The frequency response curves are plotted for asymmetric oscillations around the stable equilibria. The transition routes to chaos are obtained through the bifurcation diagrams. Chaos appears through several routes. The signature of the four well potential on the phase portraits is clearly visible by the display of periodic or chaotic rounds near the equilibrium points. The horseshoes chaos is observed by plotting the attraction basins. The model shows four basins of attraction corresponding to each of the four wells which are regular for dynamics or fractal for chaos in the Melnikov sense. Bursting and mixed modes oscillations are obtained, some of which are chaotic. The justification of the appearance of bursting oscillations is conducted using the analysis of the equilibrium points in case of a slow variation of the excitation.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"173 ","pages":"Article 105055"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225000435","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work analyses the various dynamical states that can be delivered by a sinusoidally excited cubic-quintic-septic Duffing oscillator with a potential having four wells of equal depth and three bumps of the same level using mathematical methods and numerical simulation based on the fourth order Runge-Kutta method. This special potential can be obtained in mechanics using magnets with appropriate magnetic inductions placed appropriately close to a line on which a magnetic body is moving. The frequency response curves are plotted for asymmetric oscillations around the stable equilibria. The transition routes to chaos are obtained through the bifurcation diagrams. Chaos appears through several routes. The signature of the four well potential on the phase portraits is clearly visible by the display of periodic or chaotic rounds near the equilibrium points. The horseshoes chaos is observed by plotting the attraction basins. The model shows four basins of attraction corresponding to each of the four wells which are regular for dynamics or fractal for chaos in the Melnikov sense. Bursting and mixed modes oscillations are obtained, some of which are chaotic. The justification of the appearance of bursting oscillations is conducted using the analysis of the equilibrium points in case of a slow variation of the excitation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
期刊最新文献
Neural controller for targeting a desired stationary distribution in stochastic systems Multi-objective optimization of the asymmetric-grinding rail profile for sharply curved tracks on metro line A novel weighted averaging operator for frequency analysis of nonlinear free vibrations 3D finite element analysis of micromorphic hyperelastic structures considering finite deformations: Two-point formulation Transitions to chaos, fractal basin boundaries, bursting and mixed modes oscillations in a cubic-quintic-septic duffing oscillator with four wells of equal depth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1