Estimating TYLCV resistance level using RGBD sensors in production greenhouse conditions

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY Artificial Intelligence in Agriculture Pub Date : 2024-11-03 DOI:10.1016/j.aiia.2024.10.004
Dorin Shmaryahu , Rotem Lev Lehman , Ezri Peleg , Guy Shani
{"title":"Estimating TYLCV resistance level using RGBD sensors in production greenhouse conditions","authors":"Dorin Shmaryahu ,&nbsp;Rotem Lev Lehman ,&nbsp;Ezri Peleg ,&nbsp;Guy Shani","doi":"10.1016/j.aiia.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>Automated phenotyping is the task of automatically measuring plant attributes to help farmers and breeders in developing and growing strong robust plants. An automated tool for early illness detection can accelerate the process of identifying plant resistance and quickly pinpoint problematic breeding. Many such phenotyping tasks can be achieved by analyzing images from simple, low cost, RGB-D sensors. In this paper we focused on a particular case study — identifying the resistance level of tomato hybrids to the tomato yellow leaf curl virus (TYLCV) in production greenhouses. This is a difficult task, as separating between resistance levels based on images is difficult even for expert breeders. We collected a large dataset of images from an experiment containing many tomato hybrids with varying resistance levels. We used the depth information to identify the topmost part of the tomato plant. We then used deep learning models to classify the various resistance levels. For identifying plants with visual symptoms, our methods achieved an accuracy of 0.928, a precision of 0.934, and a recall of 0.95. In the multi-class case we achieved an accuracy of 0.76 in identifying the correct level, and an error of 0.278. Our methods are not particularly tailored for the specific task, and can be extended to other tasks that identify various plant diseases with visual symptoms such as ToBRFV, mildew, ToMV and others.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"14 ","pages":"Pages 31-42"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Automated phenotyping is the task of automatically measuring plant attributes to help farmers and breeders in developing and growing strong robust plants. An automated tool for early illness detection can accelerate the process of identifying plant resistance and quickly pinpoint problematic breeding. Many such phenotyping tasks can be achieved by analyzing images from simple, low cost, RGB-D sensors. In this paper we focused on a particular case study — identifying the resistance level of tomato hybrids to the tomato yellow leaf curl virus (TYLCV) in production greenhouses. This is a difficult task, as separating between resistance levels based on images is difficult even for expert breeders. We collected a large dataset of images from an experiment containing many tomato hybrids with varying resistance levels. We used the depth information to identify the topmost part of the tomato plant. We then used deep learning models to classify the various resistance levels. For identifying plants with visual symptoms, our methods achieved an accuracy of 0.928, a precision of 0.934, and a recall of 0.95. In the multi-class case we achieved an accuracy of 0.76 in identifying the correct level, and an error of 0.278. Our methods are not particularly tailored for the specific task, and can be extended to other tasks that identify various plant diseases with visual symptoms such as ToBRFV, mildew, ToMV and others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在生产温室条件下使用 RGBD 传感器估算 TYLCV 抗性水平
自动表型分析是一项自动测量植物属性的工作,可帮助农民和育种人员开发和培育健壮的植物。用于早期病害检测的自动化工具可加快确定植物抗性的过程,并快速定位有问题的育种。通过分析来自简单、低成本 RGB-D 传感器的图像,可以完成许多此类表型任务。在本文中,我们重点研究了一个特殊的案例--在生产温室中识别番茄杂交种对番茄黄叶卷曲病毒(TYLCV)的抗性水平。这是一项艰巨的任务,因为即使是育种专家也很难根据图像区分抗性水平。我们从一项实验中收集了大量图像数据集,其中包含许多具有不同抗性水平的番茄杂交种。我们利用深度信息来识别番茄植株的最顶端部分。然后,我们使用深度学习模型对各种抗性水平进行分类。在识别具有视觉症状的植物方面,我们的方法达到了 0.928 的准确率、0.934 的精确率和 0.95 的召回率。在多类情况下,我们识别正确等级的准确率为 0.76,误差为 0.278。我们的方法并不是特别针对特定任务而设计的,可以扩展到其他任务中,如识别具有视觉症状的各种植物病害,如 ToBRFV、霜霉病、ToMV 等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Enhancing crop yield prediction in Senegal using advanced machine learning techniques and synthetic data Neural network architecture search enabled wide-deep learning (NAS-WD) for spatially heterogenous property awared chicken woody breast classification and hardness regression Utility-based regression and meta-learning techniques for modeling actual ET: Comparison to (METRIC-EEFLUX) model Detectability of multi-dimensional movement and behaviour in cattle using sensor data and machine learning algorithms: Study on a Charolais bull Estimating TYLCV resistance level using RGBD sensors in production greenhouse conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1