Congcong Ren , Nana Zhao , Li Ma , Rui Shan , Yunhua Xu , Zhen Cui , Lisheng Zhong
{"title":"Preparation and formation mechanism of (W) WC/Fe bundle reinforced iron matrix composites","authors":"Congcong Ren , Nana Zhao , Li Ma , Rui Shan , Yunhua Xu , Zhen Cui , Lisheng Zhong","doi":"10.1016/j.ceramint.2024.10.027","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issue of strength and toughness inversion in traditional metal matrix composites, which are reinforced by uniformly distributed ceramic particles, this research developed a novel space bundle configuration of reinforced iron matrix composite using tungsten wire (W) and tungsten carbide (WC). This composite was prepared using a lost foam casting process combined with in-situ reaction. Microstructural analysis revealed that WC particles are distributed along the tungsten wire, with larger particles at the center and smaller ones at the edges. The formation of the reinforcement occurs in two stages: first, a solid-liquid reaction between the solid tungsten wire and molten iron during the lost foam casting process, promoting WC formation at high temperatures and carbon potential; second, an in situ solid-solid reaction where Fe diffuses and Fe<sub>3</sub>W<sub>3</sub>C decomposes, forming a composite structure of WC and α-Fe. The composite obtained at 1100 °C for 9 h exhibited a compressive strength of 836.59 MPa and a fracture strain of 18.69 %, representing increases of 48.46 % and 48.69 % respectively compared to gray cast iron (GCI). The (W) WC/Fe bundle reinforcement effectively enhances the strength and toughness of the composite through the high volume fraction and gradient distribution of WC particles, combined with the synergistic effect of α-Fe. This research provides a new strategy for improving the mechanical properties of composite materials and resolving the issue of strength-toughness inversion.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 51152-51161"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224045395","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
To address the issue of strength and toughness inversion in traditional metal matrix composites, which are reinforced by uniformly distributed ceramic particles, this research developed a novel space bundle configuration of reinforced iron matrix composite using tungsten wire (W) and tungsten carbide (WC). This composite was prepared using a lost foam casting process combined with in-situ reaction. Microstructural analysis revealed that WC particles are distributed along the tungsten wire, with larger particles at the center and smaller ones at the edges. The formation of the reinforcement occurs in two stages: first, a solid-liquid reaction between the solid tungsten wire and molten iron during the lost foam casting process, promoting WC formation at high temperatures and carbon potential; second, an in situ solid-solid reaction where Fe diffuses and Fe3W3C decomposes, forming a composite structure of WC and α-Fe. The composite obtained at 1100 °C for 9 h exhibited a compressive strength of 836.59 MPa and a fracture strain of 18.69 %, representing increases of 48.46 % and 48.69 % respectively compared to gray cast iron (GCI). The (W) WC/Fe bundle reinforcement effectively enhances the strength and toughness of the composite through the high volume fraction and gradient distribution of WC particles, combined with the synergistic effect of α-Fe. This research provides a new strategy for improving the mechanical properties of composite materials and resolving the issue of strength-toughness inversion.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.