Bottlenose dolphin identification using synthetic image-based transfer learning

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2024-11-20 DOI:10.1016/j.ecoinf.2024.102909
Changsoo Kim , Byung-Yeob Kim , Dong-Guk Paeng
{"title":"Bottlenose dolphin identification using synthetic image-based transfer learning","authors":"Changsoo Kim ,&nbsp;Byung-Yeob Kim ,&nbsp;Dong-Guk Paeng","doi":"10.1016/j.ecoinf.2024.102909","DOIUrl":null,"url":null,"abstract":"<div><div>The Indo-Pacific bottlenose dolphin (IPBD) (<em>Tursiops aduncus</em>) is a key species in marine ecosystems. Photo-identification (photo-ID) is a fundamental method for studying dolphin populations by identifying individuals based on the unique features of their dorsal fins. Despite recent developments in learning-based photo-ID algorithms, the lack of training data for these models has become a bottleneck for improving the accuracy of these algorithms. In this study, we used synthetic image generation and deep learning to improve photography-based IPBD identification. We generated 7500 synthetic dorsal fin images of 30 dolphins and trained a custom triplet neural network using ResNet50 to distinguish individuals. The model achieved 84.8 % accuracy within the top 10-ranked positions and 72.2 % accuracy in the top 5-ranked positions, demonstrating the potential of these technologies to enhance IPBD monitoring and conservation efforts.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102909"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004515","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Indo-Pacific bottlenose dolphin (IPBD) (Tursiops aduncus) is a key species in marine ecosystems. Photo-identification (photo-ID) is a fundamental method for studying dolphin populations by identifying individuals based on the unique features of their dorsal fins. Despite recent developments in learning-based photo-ID algorithms, the lack of training data for these models has become a bottleneck for improving the accuracy of these algorithms. In this study, we used synthetic image generation and deep learning to improve photography-based IPBD identification. We generated 7500 synthetic dorsal fin images of 30 dolphins and trained a custom triplet neural network using ResNet50 to distinguish individuals. The model achieved 84.8 % accuracy within the top 10-ranked positions and 72.2 % accuracy in the top 5-ranked positions, demonstrating the potential of these technologies to enhance IPBD monitoring and conservation efforts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于合成图像的迁移学习识别瓶鼻海豚
印度-太平洋宽吻海豚(IPBD)(Tursiops aduncus)是海洋生态系统中的重要物种。照片识别(photo-ID)是研究海豚种群的基本方法,它根据海豚背鳍的独特特征来识别海豚个体。尽管基于学习的照片识别算法最近有了新的发展,但这些模型缺乏训练数据已成为提高这些算法准确性的瓶颈。在这项研究中,我们利用合成图像生成和深度学习来改进基于摄影的 IPBD 识别。我们生成了 30 头海豚的 7500 张合成背鳍图像,并使用 ResNet50 训练了一个自定义三元神经网络来区分个体。该模型在排名前 10 位的准确率达到 84.8%,在排名前 5 位的准确率达到 72.2%,证明了这些技术在加强 IPBD 监测和保护工作方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
A novel model for mapping soil organic matter: Integrating temporal and spatial characteristics A deep learning model for detecting and classifying multiple marine mammal species from passive acoustic data Impact of discharge regulation on zooplankton communities regarding indicator species and their thresholds in the cascade weirs of the Yeongsan River Study of underwater sound propagation and attenuation characteristics at the Yangjiang offshore wind farma Spatiotemporal analysis of ocean primary productivity in Bohai Sea estimated using improved DINEOF reconstructed MODIS data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1