Shaoxiong Xu , Wenjiang Huang , Dacheng Wang , Biyao Zhang , Hong Sun , Jiayu Yan , Jianli Ding , Jinjie Wang , Qiuli Yang , Tiecheng Huang , Xu Ma , Longlong Zhao , Zhuoqun Du
{"title":"Automatic pine wilt disease detection based on improved YOLOv8 UAV multispectral imagery","authors":"Shaoxiong Xu , Wenjiang Huang , Dacheng Wang , Biyao Zhang , Hong Sun , Jiayu Yan , Jianli Ding , Jinjie Wang , Qiuli Yang , Tiecheng Huang , Xu Ma , Longlong Zhao , Zhuoqun Du","doi":"10.1016/j.ecoinf.2024.102846","DOIUrl":null,"url":null,"abstract":"<div><div>The pine wilt disease (PWD) can cause destructive death to pine trees in a short period. Utilizing unmanned aerial vehicle (UAV) remote sensing technology to promptly identify PWD-infected trees has become an effective and feasible method for precise PWD monitoring. In this study, UAV multispectral imagery was used to analyze the sensitive spectral bands and different vegetation indices for PWD discriminability. A dataset of optimal spectral combinations from visible light and multispectral images was constructed, along with an improved YOLOv8 deep learning model for rapid and accurate identification of PWD-infected trees. The improved YOLOv8 model used omni-dimensional dynamic convolution (ODConv) to enhance the performance of convolutional networks, designed a dynamic head (DyHead) module to capture PWD features more accurately, and applied MPDioU to improve the regression accuracy and model runtime efficiency. Experimental results showed that the [email protected] of the improved YOLOv8 model increased to 89.1 %, with a user accuracy of 90 % and a recall rate of 93.1 %. This achieved rapid and accurate detection of PWD-infected trees, providing effective technical support for automatic identification of PWD epidemic areas and control of PWD outbreaks based on UAV multispectral imagery.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102846"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003881","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The pine wilt disease (PWD) can cause destructive death to pine trees in a short period. Utilizing unmanned aerial vehicle (UAV) remote sensing technology to promptly identify PWD-infected trees has become an effective and feasible method for precise PWD monitoring. In this study, UAV multispectral imagery was used to analyze the sensitive spectral bands and different vegetation indices for PWD discriminability. A dataset of optimal spectral combinations from visible light and multispectral images was constructed, along with an improved YOLOv8 deep learning model for rapid and accurate identification of PWD-infected trees. The improved YOLOv8 model used omni-dimensional dynamic convolution (ODConv) to enhance the performance of convolutional networks, designed a dynamic head (DyHead) module to capture PWD features more accurately, and applied MPDioU to improve the regression accuracy and model runtime efficiency. Experimental results showed that the [email protected] of the improved YOLOv8 model increased to 89.1 %, with a user accuracy of 90 % and a recall rate of 93.1 %. This achieved rapid and accurate detection of PWD-infected trees, providing effective technical support for automatic identification of PWD epidemic areas and control of PWD outbreaks based on UAV multispectral imagery.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.