Gou Xin , Zhu Xiaolong , Wang Xinwei , Wang Hui , Zhang Junhong , Lin Jiewei
{"title":"A self-growth convolution network for thermal and mechanical fault detection with very limited engine data","authors":"Gou Xin , Zhu Xiaolong , Wang Xinwei , Wang Hui , Zhang Junhong , Lin Jiewei","doi":"10.1016/j.egyai.2024.100449","DOIUrl":null,"url":null,"abstract":"<div><div>Severe faults occur infrequently but are critical for the prognostics and health management (PHM) of power machinery. Due to the scarcity of fault data, diagnostic models are always facing a very limited data problem. Basic convolutional neural networks require a large number of samples to train, and widely used data augmentation methods are influenced by data quality, which can exacerbate overfitting. To address this issue, a self-growth convolution network (SGNet) is proposed to make the deep learning process a self-growing scheme in both depth and width dimensions. The direct similarity measurement is utilized to supervise the depth-growth in the layer-by-layer training process. The feature redundancy metric is employed to control the width expansion. The self-growth scheme is proposed to disrupt the coadaptation between layers and that between kernels in order to mitigate the overfitting issue of small-sample cases. The SGNet is verified and implemented in the PHM of a heavy-duty diesel engine. It exhibits remarkable diagnostic capabilities in extremely sample-limited scenarios. With only three training samples per faulty type, the recognition rates of SGNet for the misfire fault and the gear tooth fracture fault are 88.44% and 98.11%, respectively. Further, the feature contrast, the information transmission, the noise resistance, and the frequency domain activation heat of SGNet are discussed by the ablation experiment in detail. The results indicate a novel path to solve the data-limitation problem in the PHM of important power machinery.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"18 ","pages":"Article 100449"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Severe faults occur infrequently but are critical for the prognostics and health management (PHM) of power machinery. Due to the scarcity of fault data, diagnostic models are always facing a very limited data problem. Basic convolutional neural networks require a large number of samples to train, and widely used data augmentation methods are influenced by data quality, which can exacerbate overfitting. To address this issue, a self-growth convolution network (SGNet) is proposed to make the deep learning process a self-growing scheme in both depth and width dimensions. The direct similarity measurement is utilized to supervise the depth-growth in the layer-by-layer training process. The feature redundancy metric is employed to control the width expansion. The self-growth scheme is proposed to disrupt the coadaptation between layers and that between kernels in order to mitigate the overfitting issue of small-sample cases. The SGNet is verified and implemented in the PHM of a heavy-duty diesel engine. It exhibits remarkable diagnostic capabilities in extremely sample-limited scenarios. With only three training samples per faulty type, the recognition rates of SGNet for the misfire fault and the gear tooth fracture fault are 88.44% and 98.11%, respectively. Further, the feature contrast, the information transmission, the noise resistance, and the frequency domain activation heat of SGNet are discussed by the ablation experiment in detail. The results indicate a novel path to solve the data-limitation problem in the PHM of important power machinery.