A. Giacoletti , M. Bosch-Belmar , G. Di Bona , M.C. Mangano , B. Stechele , G. Sarà
{"title":"DEBEcoMod: A dynamic energy budget R tool to predict life-history traits of marine organisms across time and space","authors":"A. Giacoletti , M. Bosch-Belmar , G. Di Bona , M.C. Mangano , B. Stechele , G. Sarà","doi":"10.1016/j.ecoinf.2024.102897","DOIUrl":null,"url":null,"abstract":"<div><div>DEBEcoMod is an open-source R script designed to apply Dynamic Energy Budget (DEB) theory to predict life-history traits of marine organisms under various environmental and anthropogenic stressors. It presents a novel approach to overcoming the computational and scale limitations of previous DEB applications, enabling the generation of spatially explicit outputs. DEBEcoMod is intended to predict traits such as maximum size, reproductive output, and life-history traits across different temporal and spatial scales. It utilises parameters from the AddMyPet database for various species and environmental time series to simulate the past, present, and future performance of organisms. The tool also includes a module for spatio-temporal representation, producing clear and accessible maps for stakeholders. The document highlights DEBEcoMod's application in invasion biology, marine spatial planning, integrated multi-trophic aquaculture, and marine ecology, drawing on published examples of spatial applications to demonstrate its versatility and potential in ecological research and adaptive management. Furthermore, the code has been cross-validated with the official DEBtool to ensure its accuracy and reliability. DEBEcoMod is available for download on GitHub, enhancing its accessibility and utility for a wide range of ecological and conservation applications.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102897"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004394","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DEBEcoMod is an open-source R script designed to apply Dynamic Energy Budget (DEB) theory to predict life-history traits of marine organisms under various environmental and anthropogenic stressors. It presents a novel approach to overcoming the computational and scale limitations of previous DEB applications, enabling the generation of spatially explicit outputs. DEBEcoMod is intended to predict traits such as maximum size, reproductive output, and life-history traits across different temporal and spatial scales. It utilises parameters from the AddMyPet database for various species and environmental time series to simulate the past, present, and future performance of organisms. The tool also includes a module for spatio-temporal representation, producing clear and accessible maps for stakeholders. The document highlights DEBEcoMod's application in invasion biology, marine spatial planning, integrated multi-trophic aquaculture, and marine ecology, drawing on published examples of spatial applications to demonstrate its versatility and potential in ecological research and adaptive management. Furthermore, the code has been cross-validated with the official DEBtool to ensure its accuracy and reliability. DEBEcoMod is available for download on GitHub, enhancing its accessibility and utility for a wide range of ecological and conservation applications.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.