Inhibiting irreversible Zn2+/H+ co-insertion chemistry in aqueous zinc-MoOx batteries for enhanced capacity stability

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-11-05 DOI:10.1016/j.jechem.2024.10.034
Chen Zheng , Xinwei Guan , Zihang Huang , Shuai Mao , Xu Han , Xiaoguang Duan , Hui Li , Tianyi Ma
{"title":"Inhibiting irreversible Zn2+/H+ co-insertion chemistry in aqueous zinc-MoOx batteries for enhanced capacity stability","authors":"Chen Zheng ,&nbsp;Xinwei Guan ,&nbsp;Zihang Huang ,&nbsp;Shuai Mao ,&nbsp;Xu Han ,&nbsp;Xiaoguang Duan ,&nbsp;Hui Li ,&nbsp;Tianyi Ma","doi":"10.1016/j.jechem.2024.10.034","DOIUrl":null,"url":null,"abstract":"<div><div>Rechargeable aqueous Zn-MoO<em><sub>x</sub></em> batteries are promising energy storage devices with high theoretical specific capacity and low cost. However, MoO<sub>3</sub> cathodes suffer drastic capacity decay during the initial discharging/charging process in conventional electrolytes, resulting in a short cycle life and challenging the development of Zn-MoO<em><sub>x</sub></em> batteries. Here we comprehensively investigate the dissolution mechanism of MoO<sub>3</sub> cathodes and innovatively introduce a polymer to inhibit the irreversible processes. Our findings reveal that this capacity decay originates from the irreversible Zn<sup>2+</sup>/H<sup>+</sup> co-intercalation/extraction process in aqueous electrolytes. Even worse, during Zn<sup>2+</sup> intercalation, the formed Zn<em><sub>x</sub></em>MoO<sub>3−</sub><em><sub>x</sub></em> intermediate phase with lower valence states (Mo<sup>5+</sup>/Mo<sup>4+</sup>) experiences severe dissolution in aqueous environments. To address these challenges, we developed a first instance of coating a polyaniline (PANI) shell around the MoO<sub>3</sub> nanorod effectively inhibiting these irreversible processes and protecting structural integrity during long-term cycling. Detailed structural analysis and theoretical calculations indicate that =N– groups in PANI@MoO<sub>3−</sub><em><sub>x</sub></em> simultaneously weaken H<sup>+</sup> adsorption and enhance Zn<sup>2+</sup> adsorption, which endowed the PANI@MoO<sub>3−</sub><em><sub>x</sub></em> cathode with reversible Zn<sup>2+</sup>/H<sup>+</sup> intercalation/extraction. Consequently, the obtained PANI@MoO<sub>3−</sub><em><sub>x</sub></em> cathode delivers an excellent discharge capacity of 316.86 mA h g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and prolonged cycling stability of 75.49% capacity retention after 1000 cycles at 5 A g<sup>−1</sup>. This work addresses the critical issues associated with MoO<sub>3</sub> cathodes and significantly advances the understanding of competitive multi-ion energy storage mechanisms in aqueous Zn-MoO<sub>3</sub> batteries.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 98-106"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable aqueous Zn-MoOx batteries are promising energy storage devices with high theoretical specific capacity and low cost. However, MoO3 cathodes suffer drastic capacity decay during the initial discharging/charging process in conventional electrolytes, resulting in a short cycle life and challenging the development of Zn-MoOx batteries. Here we comprehensively investigate the dissolution mechanism of MoO3 cathodes and innovatively introduce a polymer to inhibit the irreversible processes. Our findings reveal that this capacity decay originates from the irreversible Zn2+/H+ co-intercalation/extraction process in aqueous electrolytes. Even worse, during Zn2+ intercalation, the formed ZnxMoO3−x intermediate phase with lower valence states (Mo5+/Mo4+) experiences severe dissolution in aqueous environments. To address these challenges, we developed a first instance of coating a polyaniline (PANI) shell around the MoO3 nanorod effectively inhibiting these irreversible processes and protecting structural integrity during long-term cycling. Detailed structural analysis and theoretical calculations indicate that =N– groups in PANI@MoO3−x simultaneously weaken H+ adsorption and enhance Zn2+ adsorption, which endowed the PANI@MoO3−x cathode with reversible Zn2+/H+ intercalation/extraction. Consequently, the obtained PANI@MoO3−x cathode delivers an excellent discharge capacity of 316.86 mA h g−1 at 0.1 A g−1 and prolonged cycling stability of 75.49% capacity retention after 1000 cycles at 5 A g−1. This work addresses the critical issues associated with MoO3 cathodes and significantly advances the understanding of competitive multi-ion energy storage mechanisms in aqueous Zn-MoO3 batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抑制锌-氧化物水电池中不可逆的 Zn2+/H+ 共插入化学反应以提高容量稳定性
可充电含水锌氧化物电池是一种前景广阔的储能设备,具有理论比容量高、成本低的特点。然而,在传统电解质中,MoO3 阴极在初始放电/充电过程中容量急剧下降,导致循环寿命短,给 Zn-MoOx 电池的开发带来了挑战。在此,我们全面研究了 MoO3 阴极的溶解机制,并创新性地引入了一种聚合物来抑制不可逆过程。我们的研究结果表明,这种容量衰减源于水性电解质中不可逆的 Zn2+/H+ 共掺杂/萃取过程。更糟糕的是,在 Zn2+ 插层过程中,所形成的具有较低价态(Mo5+/Mo4+)的 ZnxMoO3-x 中间相在水环境中会发生严重溶解。为了应对这些挑战,我们首次在 MoO3 纳米棒周围涂覆了一层聚苯胺(PANI)外壳,有效地抑制了这些不可逆过程,并在长期循环过程中保护了结构的完整性。详细的结构分析和理论计算表明,PANI@MoO3-x 中的 =N- 基团同时削弱了对 H+ 的吸附并增强了对 Zn2+ 的吸附,从而使 PANI@MoO3-x 阴极具有可逆的 Zn2+/H+ 插层/萃取能力。因此,所获得的 PANI@MoO3-x 阴极在 0.1 A g-1 的条件下可提供 316.86 mA h g-1 的出色放电容量,并且在 5 A g-1 条件下循环 1000 次后仍能保持 75.49% 的容量。这项研究解决了与 MoO3 阴极相关的关键问题,极大地推动了对 Zn-MoO3 水电池中竞争性多离子储能机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries The electrochemical performance deterioration mechanism of LiNi0.83Mn0.05Co0.12O2 in aqueous slurry and a mitigation strategy In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes Opportunities and challenges in transformer neural networks for battery state estimation: Charge, health, lifetime, and safety Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1