K. Sravan Kumar , S. Mateo , A.R. de la Osa , P. Sánchez , A. de Lucas-Consuegra
{"title":"Advancements in membrane-less electrolysis configurations: Innovations and challenges","authors":"K. Sravan Kumar , S. Mateo , A.R. de la Osa , P. Sánchez , A. de Lucas-Consuegra","doi":"10.1016/j.coelec.2024.101602","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic conductive membranes have provided significant advantages in low-temperature water electrolysis configurations, but their poor stability and high cost have prompted researchers to develop various types of membrane-less electrolysis configurations of reduced design complexity and lower costs. This paper reviews recent studies in the field, comparing the results obtained with different approaches and critically advising about the main advantages and challenges to be overcome. Notable among these is the electrolyte flow-by strategy, which uses closely spaced planar electrodes and laminar flow to keep hydrogen and oxygen bubbles separated without a membrane. Various other approaches have also been investigated such as: flow-through electrodes, bubbles free gas diffusion electrodes, organic-assisted electrolysis process and microbial electrolysis cells. The different approaches discussed on the manuscript generates significant interest within the scientific community, offering an opportunity to simplify innovative electrolysis configurations addressing new scientific challenges associated with traditional electrolysis methods.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101602"},"PeriodicalIF":7.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001637","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ionic conductive membranes have provided significant advantages in low-temperature water electrolysis configurations, but their poor stability and high cost have prompted researchers to develop various types of membrane-less electrolysis configurations of reduced design complexity and lower costs. This paper reviews recent studies in the field, comparing the results obtained with different approaches and critically advising about the main advantages and challenges to be overcome. Notable among these is the electrolyte flow-by strategy, which uses closely spaced planar electrodes and laminar flow to keep hydrogen and oxygen bubbles separated without a membrane. Various other approaches have also been investigated such as: flow-through electrodes, bubbles free gas diffusion electrodes, organic-assisted electrolysis process and microbial electrolysis cells. The different approaches discussed on the manuscript generates significant interest within the scientific community, offering an opportunity to simplify innovative electrolysis configurations addressing new scientific challenges associated with traditional electrolysis methods.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •