Bayesian estimation under different loss functions for the case of inverse Rayleigh distribution

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Kuwait Journal of Science Pub Date : 2024-11-07 DOI:10.1016/j.kjs.2024.100343
Ferra Yanuar , Muhammad Iqbal , Dodi Devianto , Aidinil Zetra , Yudiantri Asdi , Ridhatul Ilahi , Ridha Fadila Sani
{"title":"Bayesian estimation under different loss functions for the case of inverse Rayleigh distribution","authors":"Ferra Yanuar ,&nbsp;Muhammad Iqbal ,&nbsp;Dodi Devianto ,&nbsp;Aidinil Zetra ,&nbsp;Yudiantri Asdi ,&nbsp;Ridhatul Ilahi ,&nbsp;Ridha Fadila Sani","doi":"10.1016/j.kjs.2024.100343","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the best parameter estimator for the scale parameter <span><math><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></math></span> of the inverse Rayleigh distribution was determined based on a comparison of the maximum likelihood estimator (MLE) method, the Bayesian generalized squared error loss function (SELF), the Bayesian linear exponential loss function (LINEX LF), and the Bayesian entropy loss function (ELF). The prior distribution chosen was the non-informative prior, namely the Jeffrey prior, and the informative prior using the exponential distribution. The estimator evaluation method used was based on the smallest value of the Akaike information criterion (AIC), corrected Akaike information criterion (AICc), and Bayesian information criterion (BIC). Based on simulation studies and real data, it was found that the best parameter estimator on the data for the scale parameter <span><math><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></math></span> of the inverse Rayleigh distribution is the Bayes ELF prior exponential <span><math><mrow><mo>(</mo><msub><mover><mi>θ</mi><mo>ˆ</mo></mover><mrow><mi>E</mi><mi>E</mi></mrow></msub><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":17848,"journal":{"name":"Kuwait Journal of Science","volume":"52 1","pages":"Article 100343"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307410824001688","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the best parameter estimator for the scale parameter (θ) of the inverse Rayleigh distribution was determined based on a comparison of the maximum likelihood estimator (MLE) method, the Bayesian generalized squared error loss function (SELF), the Bayesian linear exponential loss function (LINEX LF), and the Bayesian entropy loss function (ELF). The prior distribution chosen was the non-informative prior, namely the Jeffrey prior, and the informative prior using the exponential distribution. The estimator evaluation method used was based on the smallest value of the Akaike information criterion (AIC), corrected Akaike information criterion (AICc), and Bayesian information criterion (BIC). Based on simulation studies and real data, it was found that the best parameter estimator on the data for the scale parameter (θ) of the inverse Rayleigh distribution is the Bayes ELF prior exponential (θˆEE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反瑞利分布情况下不同损失函数下的贝叶斯估计
本研究在比较最大似然估计法(MLE)、贝叶斯广义平方误差损失函数(SELF)、贝叶斯线性指数损失函数(LINEX LF)和贝叶斯熵损失函数(ELF)的基础上,确定了反向瑞利分布尺度参数(θ)的最佳参数估计值。选择的先验分布是非信息先验(即杰弗里先验)和使用指数分布的信息先验。所使用的估计器评价方法基于阿卡伊克信息准则(AIC)、校正阿卡伊克信息准则(AICc)和贝叶斯信息准则(BIC)的最小值。根据模拟研究和实际数据,发现反向瑞利分布的尺度参数(θ)的最佳数据参数估计器是贝叶斯 ELF 先验指数(θˆEE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Kuwait Journal of Science
Kuwait Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
28.60%
发文量
132
期刊介绍: Kuwait Journal of Science (KJS) is indexed and abstracted by major publishing houses such as Chemical Abstract, Science Citation Index, Current contents, Mathematics Abstract, Micribiological Abstracts etc. KJS publishes peer-review articles in various fields of Science including Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry and Earth & Environmental Sciences. In addition, it also aims to bring the results of scientific research carried out under a variety of intellectual traditions and organizations to the attention of specialized scholarly readership. As such, the publisher expects the submission of original manuscripts which contain analysis and solutions about important theoretical, empirical and normative issues.
期刊最新文献
Optimization of fermentation conditions for 3-methylthio-1-propanol production by Saccharomycopsis fibuligera Y1402 in tobacco matrix Bayesian estimation strategy for multi-component geometric life testing model under doubly type-1 censoring scheme In silico analysis of point mutation (c.687dupC; p. Met230Hisfs∗6) in PGAM2 gene that causes Glycogen Storage Disease (GSD) Type X Innovative synthesis and performance enhancement of yttria-stabilized zirconia nanocrystals via hydrothermal method with Uncaria gambir Roxb. leaf extract as a capping agent Bayesian estimation under different loss functions for the case of inverse Rayleigh distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1