{"title":"Insight into the keyhole behaviour and its role on residual stress formation in vacuum electron beam welding of TC4 titanium alloy","authors":"Yu Wan, Laimin Song, Xuyang Zhang, Wenchun Jiang, Xuefang Xie, Xinyue Qi","doi":"10.1016/j.vacuum.2024.113835","DOIUrl":null,"url":null,"abstract":"<div><div>Electron beam welding (EBW) is the preferred technique for joining TC4 titanium alloy. Accurately characterizing the welding keyhole and residual stress distribution, along with analyzing their formation mechanisms, is of paramount importance for ensuring high reliability of the TC4 EBW structures. In this regard, a “thermal-fluid-metallurgical-mechanical” multi-field coupling numerical method was developed, which was then validated by the vital experiments. The evolution of the keyhole, molten pool temperature, phase volume fraction and residual stresses was then revealed. The influencing mechanism of keyhole on residual stress was explored comprehensively. The results show that metal vapor recoil pressure serves as the primary factor in keyhole formation, while the surface tension promotes keyhole closure. The β-phase in the weld zone undergoes a complete transformation into α′ acicular martensite. Moreover, the maximum longitudinal stress occurs at the weld center, while the transverse stress exhibits a substantial stress gradient along the thickness direction. Increasing the welding power raises the temperature of molten pool. The keyhole depth and width are also enlarged, accompanying by the increase of residual stress, which is expected to offer a theoretical foundation for managing the keyhole and residual stress generated during the EBW of TC4 titanium alloy.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"232 ","pages":"Article 113835"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008819","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electron beam welding (EBW) is the preferred technique for joining TC4 titanium alloy. Accurately characterizing the welding keyhole and residual stress distribution, along with analyzing their formation mechanisms, is of paramount importance for ensuring high reliability of the TC4 EBW structures. In this regard, a “thermal-fluid-metallurgical-mechanical” multi-field coupling numerical method was developed, which was then validated by the vital experiments. The evolution of the keyhole, molten pool temperature, phase volume fraction and residual stresses was then revealed. The influencing mechanism of keyhole on residual stress was explored comprehensively. The results show that metal vapor recoil pressure serves as the primary factor in keyhole formation, while the surface tension promotes keyhole closure. The β-phase in the weld zone undergoes a complete transformation into α′ acicular martensite. Moreover, the maximum longitudinal stress occurs at the weld center, while the transverse stress exhibits a substantial stress gradient along the thickness direction. Increasing the welding power raises the temperature of molten pool. The keyhole depth and width are also enlarged, accompanying by the increase of residual stress, which is expected to offer a theoretical foundation for managing the keyhole and residual stress generated during the EBW of TC4 titanium alloy.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.