Yili Wang , Kejun Xia , Guofu Niu , Michael Hamilton , Xu Cheng
{"title":"Characterization of LDMOS down to cryogenic temperatures and modeling with PSPHV","authors":"Yili Wang , Kejun Xia , Guofu Niu , Michael Hamilton , Xu Cheng","doi":"10.1016/j.sse.2024.109029","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a detailed characterization and analysis of a 45 V LDMOS device from production technology across a wide temperature range from 33 to 385 K. For the first time, quasi-saturation behavior is consistently observed throughout the entire temperature range studied. Compared to prior published data, this device shows some notable differences, including a substantially higher saturation temperature of around 200 K for threshold voltage and subthreshold swing due to band tail and a typical low on-resistance down to 33 K, free of freezeout. To account for the observed temperature dependencies, we propose improved semi-empirical temperature scaling equations for the PSPHV model. We extend its applicable temperature range down to 33 K from the previous lower limit of 240 K. The enhancement models the temperature behaviors of key device parameters, including threshold voltage, subthreshold swing, mobility, velocity saturation, drift resistance, and quasi-saturation effects. These results provide new insights into the low-temperature behavior of LDMOS devices for cryogenic electronics applications.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109029"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001783","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a detailed characterization and analysis of a 45 V LDMOS device from production technology across a wide temperature range from 33 to 385 K. For the first time, quasi-saturation behavior is consistently observed throughout the entire temperature range studied. Compared to prior published data, this device shows some notable differences, including a substantially higher saturation temperature of around 200 K for threshold voltage and subthreshold swing due to band tail and a typical low on-resistance down to 33 K, free of freezeout. To account for the observed temperature dependencies, we propose improved semi-empirical temperature scaling equations for the PSPHV model. We extend its applicable temperature range down to 33 K from the previous lower limit of 240 K. The enhancement models the temperature behaviors of key device parameters, including threshold voltage, subthreshold swing, mobility, velocity saturation, drift resistance, and quasi-saturation effects. These results provide new insights into the low-temperature behavior of LDMOS devices for cryogenic electronics applications.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.