Impact of vanadium (V) content on in-situ oxidation, high temperature mechanical strength and tribological properties of Al0.5CrFeNiVx high entropy alloys
Xiaotian Wu , Lihong Su , Anh Kiet Tieu , Jun Cheng , Cuong Nguyen , Hongtao Zhu , Jun Yang , Guanyu Deng
{"title":"Impact of vanadium (V) content on in-situ oxidation, high temperature mechanical strength and tribological properties of Al0.5CrFeNiVx high entropy alloys","authors":"Xiaotian Wu , Lihong Su , Anh Kiet Tieu , Jun Cheng , Cuong Nguyen , Hongtao Zhu , Jun Yang , Guanyu Deng","doi":"10.1016/j.triboint.2024.110375","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, four vanadium (V) containing high entropy alloys (HEAs) Al<sub>0.5</sub>CrFeNiV<sub>x</sub> (x = 0.25, 0.5, 0.75, 1.0) were developed and investigated, in terms of examining the influence of V content on their microstructure, in-situ oxidation behavior, high temperature mechanical strength, and high temperature tribological performances. An increase in the V content causes precipitation of the Laves phase (VAl<sub>2</sub>) in the body-centered cubic (BCC) matrix. This structural transition increases the alloy hardness and compressive strength through solid solution strengthening, precipitation strengthening and grain refinement strengthening. When x is increased from 0.25 to 1, the maximum compressive strength increases from about 2476 to 3241 MPa at room temperature and from about 521 to 797 MPa at 700 °C, respectively. In-situ oxidation investigation reveals that a higher V content accelerates the oxidation and provides a direct evidence of vanadium oxides melting at 700 °C and thus forming the liquid oxide phases on the surface of HEAs. During high temperature tribological contact, the liquid oxide phases minimize the friction, allowing thicker and more complex oxide layers to form on the worn surface to improve the HEAs’ wear resistance. The findings in this work contribute to the development of novel HEAs with superior properties for potential applications that need outstanding mechanical strength, wear resistance, and thermal stability.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110375"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24011277","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, four vanadium (V) containing high entropy alloys (HEAs) Al0.5CrFeNiVx (x = 0.25, 0.5, 0.75, 1.0) were developed and investigated, in terms of examining the influence of V content on their microstructure, in-situ oxidation behavior, high temperature mechanical strength, and high temperature tribological performances. An increase in the V content causes precipitation of the Laves phase (VAl2) in the body-centered cubic (BCC) matrix. This structural transition increases the alloy hardness and compressive strength through solid solution strengthening, precipitation strengthening and grain refinement strengthening. When x is increased from 0.25 to 1, the maximum compressive strength increases from about 2476 to 3241 MPa at room temperature and from about 521 to 797 MPa at 700 °C, respectively. In-situ oxidation investigation reveals that a higher V content accelerates the oxidation and provides a direct evidence of vanadium oxides melting at 700 °C and thus forming the liquid oxide phases on the surface of HEAs. During high temperature tribological contact, the liquid oxide phases minimize the friction, allowing thicker and more complex oxide layers to form on the worn surface to improve the HEAs’ wear resistance. The findings in this work contribute to the development of novel HEAs with superior properties for potential applications that need outstanding mechanical strength, wear resistance, and thermal stability.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.