Jumara Silva de Sousa , Alessandra Marjorie de Oliveira , Nicole Novelli do Nascimento , Rosângela Bergamasco , Benício Alves de Abreu Filho , Angélica Marquetotti Salcedo Vieira
{"title":"Metal nanoparticles in flaxseed and orange Waste: Sustainable Applications as Antimicrobial agents in water treatment systems","authors":"Jumara Silva de Sousa , Alessandra Marjorie de Oliveira , Nicole Novelli do Nascimento , Rosângela Bergamasco , Benício Alves de Abreu Filho , Angélica Marquetotti Salcedo Vieira","doi":"10.1016/j.enmm.2024.101024","DOIUrl":null,"url":null,"abstract":"<div><div>The generation of agro-industrial waste has become a growing concern due to the high volume generated, which can result in increased environmental pollution. In this respect, the reuse of these materials as adsorbents would contribute to environmental sustainability. Flaxseed and orange waste are co-products that can be given added value when functionalized with metallic nanoparticles that have an antibacterial action, becoming an alternative for water contaminated by pathogenic microorganisms, an increasingly recurring problem in the world due to the quality of the water consumed and distributed to the population. Therefore, the main objective of this study was to develop adsorbents with brown flaxseed and orange peel waste impregnated with copper and silver nanoparticles using green synthesis to evaluate the antibacterial activity of these adsorbents against two bacterial strains, <em>Escherichia coli</em> and <em>Pseudomonas aeruginosa</em>, in contaminated water. For the synthesis of the nanomaterials, copper and silver nitrates were used as precursors, and <em>Moringa oleifera</em> leaf extract as a reducing agent. For the microbiological tests, MIC and MBC were initially evaluated. Subsequently, adsorption, bacterial growth curve, and time-kill tests were carried out for <em>E. coli</em> and <em>P. aeruginosa</em>. The antibacterial and bactericidal activities of the functionalized materials were demonstrated. The proposed adsorption mechanism reported that increasing the mass favored a higher percentage of bacterial reduction. However, the adsorbents functionalized with copper oxide nanoparticles showed better results against the bacteria under study, using the lowest mass of material (0.05 g), achieving a 99 % reduction of bacterial biomass after 24 h of treatment. In addition, the inhibition of <em>E. coli</em> and <em>P. aeruginosa</em> biomass was effectively observed after 2 h of treatment, demonstrating that these materials have a high potential for controlling these microorganisms in water.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101024"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of agro-industrial waste has become a growing concern due to the high volume generated, which can result in increased environmental pollution. In this respect, the reuse of these materials as adsorbents would contribute to environmental sustainability. Flaxseed and orange waste are co-products that can be given added value when functionalized with metallic nanoparticles that have an antibacterial action, becoming an alternative for water contaminated by pathogenic microorganisms, an increasingly recurring problem in the world due to the quality of the water consumed and distributed to the population. Therefore, the main objective of this study was to develop adsorbents with brown flaxseed and orange peel waste impregnated with copper and silver nanoparticles using green synthesis to evaluate the antibacterial activity of these adsorbents against two bacterial strains, Escherichia coli and Pseudomonas aeruginosa, in contaminated water. For the synthesis of the nanomaterials, copper and silver nitrates were used as precursors, and Moringa oleifera leaf extract as a reducing agent. For the microbiological tests, MIC and MBC were initially evaluated. Subsequently, adsorption, bacterial growth curve, and time-kill tests were carried out for E. coli and P. aeruginosa. The antibacterial and bactericidal activities of the functionalized materials were demonstrated. The proposed adsorption mechanism reported that increasing the mass favored a higher percentage of bacterial reduction. However, the adsorbents functionalized with copper oxide nanoparticles showed better results against the bacteria under study, using the lowest mass of material (0.05 g), achieving a 99 % reduction of bacterial biomass after 24 h of treatment. In addition, the inhibition of E. coli and P. aeruginosa biomass was effectively observed after 2 h of treatment, demonstrating that these materials have a high potential for controlling these microorganisms in water.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation