Shenggui Liu , Chaojiang Li , Xin Jin , Dingyifei Ma , Qi Yan , Guodong Liu , Jue Liu , Xun Cao , Hao Wang
{"title":"Solid dielectric electrochemical polishing of 3D-printed parts: Performance and mechanisms","authors":"Shenggui Liu , Chaojiang Li , Xin Jin , Dingyifei Ma , Qi Yan , Guodong Liu , Jue Liu , Xun Cao , Hao Wang","doi":"10.1016/j.ijmecsci.2024.109822","DOIUrl":null,"url":null,"abstract":"<div><div>Surface post-processing of metal additive manufacturing components is challenging due to their typically complex geometries (<em>e.g.</em>, curved surfaces) coupled with high initial surface roughness. Herein, we propose an efficient solid dielectric electrochemical polishing (SDECP) method employing ion exchange resin particles with a porous structure that absorbs and stores electrolytes as a conductive medium. This method enhances the surface quality of additively manufactured components with Bézier curved surfaces to a mirror finish, achieving improvements in Sa, Sq, and Sz of 91.5%, 91.7%, and 86.9%, respectively. Planetary motion strategies are implemented to optimize mass transfer on the anode surface in the discontinuous solid dielectric. Results indicate that bidirectional planetary motion (BPR) in SDECP effectively improves the uniformity of surface roughness and material removal across different regions of the part. Furthermore, we quantitatively describe the relationship between material removal rate (MRR) and average current in SDECP. The intermittent material removal mechanism of SDECP is elucidated utilizing discrete element method (DEM) simulations. Our work offers innovative insights into the material removal mechanisms of SDECP, presenting an efficient approach for overall surface post-processing of metal additive manufacturing components.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109822"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324008634","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface post-processing of metal additive manufacturing components is challenging due to their typically complex geometries (e.g., curved surfaces) coupled with high initial surface roughness. Herein, we propose an efficient solid dielectric electrochemical polishing (SDECP) method employing ion exchange resin particles with a porous structure that absorbs and stores electrolytes as a conductive medium. This method enhances the surface quality of additively manufactured components with Bézier curved surfaces to a mirror finish, achieving improvements in Sa, Sq, and Sz of 91.5%, 91.7%, and 86.9%, respectively. Planetary motion strategies are implemented to optimize mass transfer on the anode surface in the discontinuous solid dielectric. Results indicate that bidirectional planetary motion (BPR) in SDECP effectively improves the uniformity of surface roughness and material removal across different regions of the part. Furthermore, we quantitatively describe the relationship between material removal rate (MRR) and average current in SDECP. The intermittent material removal mechanism of SDECP is elucidated utilizing discrete element method (DEM) simulations. Our work offers innovative insights into the material removal mechanisms of SDECP, presenting an efficient approach for overall surface post-processing of metal additive manufacturing components.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.