Jing Xie , Wenao Wang , Changhang Xu , Mingfu Fu , Weiping Huang
{"title":"Two-step feature extraction of acoustic emission signals for leakage detection of valves in gas pipelines","authors":"Jing Xie , Wenao Wang , Changhang Xu , Mingfu Fu , Weiping Huang","doi":"10.1016/j.ijpvp.2024.105364","DOIUrl":null,"url":null,"abstract":"<div><div>Evaluation of valve conditions is necessary to maintain integrity of pipelines and can be achieved using Acoustic Emission (AE) technique. Effective feature extraction from AE signals is critical to improving the accuracy of evaluation on valve conditions. In this study, a new method is proposed for processing AE signals to extract a two-dimension feature, which can characterize valve conditions more accurately. Time-frequency features of AE signal are extracted through Mel-spectrum analysis and then a deeper feature is extracted by a Generative Adversarial Network (GAN) model. Experiments were implemented considering three working conditions under three pressure levels in the pipeline. Results show that based on the extracted feature, leakage condition and non-leakage condition can be entirely differentiated and investigated leakage conditions can be differentiated with a high accuracy. By extracting the new effective feature, the proposed method provides a new way to effectively evaluate valve conditions.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105364"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124002424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluation of valve conditions is necessary to maintain integrity of pipelines and can be achieved using Acoustic Emission (AE) technique. Effective feature extraction from AE signals is critical to improving the accuracy of evaluation on valve conditions. In this study, a new method is proposed for processing AE signals to extract a two-dimension feature, which can characterize valve conditions more accurately. Time-frequency features of AE signal are extracted through Mel-spectrum analysis and then a deeper feature is extracted by a Generative Adversarial Network (GAN) model. Experiments were implemented considering three working conditions under three pressure levels in the pipeline. Results show that based on the extracted feature, leakage condition and non-leakage condition can be entirely differentiated and investigated leakage conditions can be differentiated with a high accuracy. By extracting the new effective feature, the proposed method provides a new way to effectively evaluate valve conditions.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.