ODDF-Net: Multi-object segmentation in 3D retinal OCTA using optical density and disease features

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-09 DOI:10.1016/j.knosys.2024.112704
Chaozhi Yang , Jiayue Fan , Yun Bai , Yachuan Li , Qian Xiao , Zongmin Li , Hongyi Li , Hua Li
{"title":"ODDF-Net: Multi-object segmentation in 3D retinal OCTA using optical density and disease features","authors":"Chaozhi Yang ,&nbsp;Jiayue Fan ,&nbsp;Yun Bai ,&nbsp;Yachuan Li ,&nbsp;Qian Xiao ,&nbsp;Zongmin Li ,&nbsp;Hongyi Li ,&nbsp;Hua Li","doi":"10.1016/j.knosys.2024.112704","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic extraction of retinal structures, including Retinal Capillaries (RC), Retinal Arteries (RA), Retinal Veins (RV), and the Foveal Avascular Zone (FAZ), is crucial for the diagnosis and treatment of ocular diseases. This paper presents ODDF-Net, a segmentation network leveraging optical density and disease features, for the simultaneous 2D segmentation of RC, RA, RV, and FAZ in 3D Optical Coherence Tomography Angiography (OCTA). We introduce the concept of optical density to generate additional input images, enhancing the specificity for distinguishing arteries and veins. Our network employs a decoupled segmentation head to separate independent features of each object from shared features by focusing on object boundaries. Given the impact of ocular diseases on the morphology of retinal objects, we designed an auxiliary classification head and a cross-dimensional feature fusion module to model the relationship between various diseases and changes in retinal structures. Extensive experiments on two subsets of the OCTA-500 dataset demonstrate that ODDF-Net outperforms state-of-the-art methods, achieving mean intersection over union ratios of 88.17% and 82.80%. The source code is available at <span><span>https://github.com/y8421036/ODDF-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"306 ","pages":"Article 112704"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013388","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic extraction of retinal structures, including Retinal Capillaries (RC), Retinal Arteries (RA), Retinal Veins (RV), and the Foveal Avascular Zone (FAZ), is crucial for the diagnosis and treatment of ocular diseases. This paper presents ODDF-Net, a segmentation network leveraging optical density and disease features, for the simultaneous 2D segmentation of RC, RA, RV, and FAZ in 3D Optical Coherence Tomography Angiography (OCTA). We introduce the concept of optical density to generate additional input images, enhancing the specificity for distinguishing arteries and veins. Our network employs a decoupled segmentation head to separate independent features of each object from shared features by focusing on object boundaries. Given the impact of ocular diseases on the morphology of retinal objects, we designed an auxiliary classification head and a cross-dimensional feature fusion module to model the relationship between various diseases and changes in retinal structures. Extensive experiments on two subsets of the OCTA-500 dataset demonstrate that ODDF-Net outperforms state-of-the-art methods, achieving mean intersection over union ratios of 88.17% and 82.80%. The source code is available at https://github.com/y8421036/ODDF-Net.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ODDF-Net:利用光密度和疾病特征在三维视网膜 OCTA 中进行多目标分割
自动提取视网膜结构,包括视网膜毛细血管(RC)、视网膜动脉(RA)、视网膜静脉(RV)和眼窝血管区(FAZ),对于眼部疾病的诊断和治疗至关重要。本文介绍了一种利用光密度和疾病特征的分割网络 ODDF-Net,用于在三维光学相干断层扫描血管造影(OCTA)中同时对 RC、RA、RV 和 FAZ 进行二维分割。我们引入了光密度的概念来生成额外的输入图像,从而提高了区分动脉和静脉的特异性。我们的网络采用解耦分割头,通过关注对象边界,将每个对象的独立特征从共享特征中分离出来。考虑到眼部疾病对视网膜对象形态的影响,我们设计了一个辅助分类头和一个跨维特征融合模块,以模拟各种疾病与视网膜结构变化之间的关系。在 OCTA-500 数据集的两个子集上进行的大量实验表明,ODDF-Net 的表现优于最先进的方法,其平均交集比联合比分别达到了 88.17% 和 82.80%。源代码见 https://github.com/y8421036/ODDF-Net。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Progressive de-preference task-specific processing for generalizable person re-identification GKA-GPT: Graphical knowledge aggregation for multiturn dialog generation A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective PSNet: A non-uniform illumination correction method for underwater images based pseudo-siamese network A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1