Ashley E Kramer , Kathryn M Ellwood , Nicole Guarino , Cong-Jun Li , Aditya Dutta
{"title":"Transcriptomic data reveals MYC as an upstream regulator in laying hen follicular recruitment","authors":"Ashley E Kramer , Kathryn M Ellwood , Nicole Guarino , Cong-Jun Li , Aditya Dutta","doi":"10.1016/j.psj.2024.104547","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the mechanisms of follicular recruitment is essential for improving laying hen and broiler breeder productivity, as it directly influences egg production. Despite advancements in poultry breeding for enhanced egg production, the factors driving successful ovarian follicle maturation remain inadequately understood. This study investigates the genetic drivers mediating the transition of pre-recruitment follicles to the pre-ovulatory phase, a crucial stage before ovulation. Using RNA sequencing and bioinformatics approaches such as a differential gene expression analysis, we compared pre-recruitment follicles with the recently recruited F5 pre-ovulatory follicle to identify key genes and upstream regulators involved in this transition. Further validation through qRT-PCR confirmed these findings. Using Qiagen's Ingenuity Pathway Analysis we identified MYC proto-oncogene (C-Myc) as a pivotal upstream regulator, controlling genes essential for cell proliferation and differentiation. Additionally, TGFβ1 emerged as a key regulator, influencing pathways involving SMAD3, TNF, and TP53. The study highlights the intricate regulatory network involving MYC and other transcription factors such as CTNNB1, crucial for follicular development. These findings provide valuable insights into the molecular mechanisms governing follicular selection and maturation, which are essential for enhancing egg production efficiency. Future research should explore the roles of MYC, CTNNB1, and other driver genes in follicular development to further understand and improve reproductive efficiency in poultry.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 1","pages":"Article 104547"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579124011258","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the mechanisms of follicular recruitment is essential for improving laying hen and broiler breeder productivity, as it directly influences egg production. Despite advancements in poultry breeding for enhanced egg production, the factors driving successful ovarian follicle maturation remain inadequately understood. This study investigates the genetic drivers mediating the transition of pre-recruitment follicles to the pre-ovulatory phase, a crucial stage before ovulation. Using RNA sequencing and bioinformatics approaches such as a differential gene expression analysis, we compared pre-recruitment follicles with the recently recruited F5 pre-ovulatory follicle to identify key genes and upstream regulators involved in this transition. Further validation through qRT-PCR confirmed these findings. Using Qiagen's Ingenuity Pathway Analysis we identified MYC proto-oncogene (C-Myc) as a pivotal upstream regulator, controlling genes essential for cell proliferation and differentiation. Additionally, TGFβ1 emerged as a key regulator, influencing pathways involving SMAD3, TNF, and TP53. The study highlights the intricate regulatory network involving MYC and other transcription factors such as CTNNB1, crucial for follicular development. These findings provide valuable insights into the molecular mechanisms governing follicular selection and maturation, which are essential for enhancing egg production efficiency. Future research should explore the roles of MYC, CTNNB1, and other driver genes in follicular development to further understand and improve reproductive efficiency in poultry.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.