Gel interface for garnet-based lithium metal batteries with high loading cathode

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters Pub Date : 2024-11-19 DOI:10.1016/j.matlet.2024.137729
Cheng Ouyang , Shaoping Wu , Guoyao Li , Nan Zhang , Qiwen Chen , Rongzi Zhang , Haidong Sun , Chenglan Zhang , Hezhou Liu , Huanan Duan
{"title":"Gel interface for garnet-based lithium metal batteries with high loading cathode","authors":"Cheng Ouyang ,&nbsp;Shaoping Wu ,&nbsp;Guoyao Li ,&nbsp;Nan Zhang ,&nbsp;Qiwen Chen ,&nbsp;Rongzi Zhang ,&nbsp;Haidong Sun ,&nbsp;Chenglan Zhang ,&nbsp;Hezhou Liu ,&nbsp;Huanan Duan","doi":"10.1016/j.matlet.2024.137729","DOIUrl":null,"url":null,"abstract":"<div><div>Garnet-type electrolytes are ideal for lithium-metal batteries due to their high ionic conductivity and electrochemical stability. However, high interfacial resistance caused by poor contact with electrodes remains a challenge. To address this, we developed a flexible gel interlayer via in-situ polymerization to improve interface contact and reduce impedance. Additionally, a thick cathode with a laser-drilled channel structure was constructed to enhance gel electrolyte penetration and discharge capacity. Consequently, the Li/GEL-LLZTO-GEL/Li symmetric cell achieved a critical current density of 1.5 mA cm<sup>−2</sup> and a reduced interfacial resistance of 134 O at room temperature. The quasi-solid half-cell with the laser-drilled cathode maintained a discharge capacity of 132.4 mAh/g with an active material loading of 13.1 mg cm<sup>−2</sup> after 100 cycles. This work provides a simple and effective method for manufacturing safe and stable lithium metal batteries.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"380 ","pages":"Article 137729"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X2401869X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Garnet-type electrolytes are ideal for lithium-metal batteries due to their high ionic conductivity and electrochemical stability. However, high interfacial resistance caused by poor contact with electrodes remains a challenge. To address this, we developed a flexible gel interlayer via in-situ polymerization to improve interface contact and reduce impedance. Additionally, a thick cathode with a laser-drilled channel structure was constructed to enhance gel electrolyte penetration and discharge capacity. Consequently, the Li/GEL-LLZTO-GEL/Li symmetric cell achieved a critical current density of 1.5 mA cm−2 and a reduced interfacial resistance of 134 O at room temperature. The quasi-solid half-cell with the laser-drilled cathode maintained a discharge capacity of 132.4 mAh/g with an active material loading of 13.1 mg cm−2 after 100 cycles. This work provides a simple and effective method for manufacturing safe and stable lithium metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石榴石基高负载正极锂金属电池的凝胶界面
石榴石型电解质具有高离子传导性和电化学稳定性,是锂金属电池的理想选择。然而,与电极接触不良导致的高界面电阻仍然是一个挑战。为了解决这个问题,我们通过原位聚合开发了一种柔性凝胶中间膜,以改善界面接触并降低阻抗。此外,我们还构建了具有激光钻孔通道结构的厚阴极,以增强凝胶电解质的渗透性和放电能力。因此,Li/GEL-LLZTO-GEL/Li 对称电池在室温下的临界电流密度达到了 1.5 mA cm-2,界面电阻降低到了 134 O。使用激光钻孔阴极的准固体半电池在经过 100 次循环后,在活性材料负载为 13.1 mg cm-2 的情况下仍能保持 132.4 mAh/g 的放电容量。这项工作为制造安全稳定的锂金属电池提供了一种简单有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
期刊最新文献
Experimental studies on dilution, microstructural, mechanical and wear characteristics of Inconel 718 deposited over stainless steel 304 employing cold metal transfer process Improving thermoelectric properties of CuMnSb alloys via strategic alloying with magnetic MnSb and Cu Editorial Board Influence of gas protection on porosity distribution and mechanical properties of 2195-T8 Al-Li alloy tungsten inert gas welded joints Preparation and properties of inclusion complex of resveratrol with epichlorohydrin-modified β-cyclodextrin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1