Developing a dual-mode confined layer slip model for Al/Mg composites with incoherent FCC/HCP interfaces: Insights from molecular dynamics studies

Zhou Li , Tong Shen , Junhao Li , Shiqi Xia , Long Yu , Che Zhang
{"title":"Developing a dual-mode confined layer slip model for Al/Mg composites with incoherent FCC/HCP interfaces: Insights from molecular dynamics studies","authors":"Zhou Li ,&nbsp;Tong Shen ,&nbsp;Junhao Li ,&nbsp;Shiqi Xia ,&nbsp;Long Yu ,&nbsp;Che Zhang","doi":"10.1016/j.nxmate.2024.100433","DOIUrl":null,"url":null,"abstract":"<div><div>The classic Hall-Petch model effectively captures the relationship between strength and layer thickness for thicknesses above 100 nm, while the constrained layer slip (CLS) model provides a better prediction for thicknesses below 100 nm. Nonetheless, the precision of the current CLS model is insufficient, especially for structures with FCC/HCP interfaces, which limits the development of lightweight composites such as Al/Mg. To address this gap, this study uses molecular dynamics (MD) simulations to explore the CLS mechanism under compression in Al/Mg composites. We propose a novel dual-mode CLS model aimed at enhancing the accuracy of stress predictions across a wide range of layer thicknesses and various slip angles. Our findings indicate that with decreasing layer thickness and the loss of lattice structure, the FCC/HCP interface becomes unstable and exhibits reduced strength when the layer thickness falls below 26.7 nm. Moreover, as the slip angle rises from 0° to 75°, the improved interface compatibility aids in the initiation of basal slip in the Mg layer. This triggers a migration of dislocations from the Al side to the Mg side, thereby altering the dominant CLS mechanism. This work is expected to accelerate the development of Al/Mg composites and other similar FCC/HCP composite systems.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"6 ","pages":"Article 100433"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824003319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The classic Hall-Petch model effectively captures the relationship between strength and layer thickness for thicknesses above 100 nm, while the constrained layer slip (CLS) model provides a better prediction for thicknesses below 100 nm. Nonetheless, the precision of the current CLS model is insufficient, especially for structures with FCC/HCP interfaces, which limits the development of lightweight composites such as Al/Mg. To address this gap, this study uses molecular dynamics (MD) simulations to explore the CLS mechanism under compression in Al/Mg composites. We propose a novel dual-mode CLS model aimed at enhancing the accuracy of stress predictions across a wide range of layer thicknesses and various slip angles. Our findings indicate that with decreasing layer thickness and the loss of lattice structure, the FCC/HCP interface becomes unstable and exhibits reduced strength when the layer thickness falls below 26.7 nm. Moreover, as the slip angle rises from 0° to 75°, the improved interface compatibility aids in the initiation of basal slip in the Mg layer. This triggers a migration of dislocations from the Al side to the Mg side, thereby altering the dominant CLS mechanism. This work is expected to accelerate the development of Al/Mg composites and other similar FCC/HCP composite systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为具有不连贯 FCC/HCP 界面的铝/镁复合材料开发双模约束层滑移模型:分子动力学研究的启示
经典的霍尔-佩奇(Hall-Petch)模型能有效捕捉厚度超过 100 纳米时强度与层厚度之间的关系,而受约束层滑移(CLS)模型则能更好地预测厚度低于 100 纳米时的强度。然而,目前的 CLS 模型精度不够,特别是对于具有 FCC/HCP 界面的结构,这限制了铝/镁等轻质复合材料的发展。为了弥补这一不足,本研究采用分子动力学 (MD) 模拟来探索铝/镁复合材料在压缩条件下的 CLS 机理。我们提出了一种新颖的双模式 CLS 模型,旨在提高各种层厚度和各种滑移角下的应力预测精度。我们的研究结果表明,随着层厚度的减小和晶格结构的丧失,当层厚度低于 26.7 nm 时,FCC/HCP 界面变得不稳定并表现出强度降低。此外,当滑移角从 0° 上升到 75° 时,界面兼容性的改善有助于镁层基底滑移的启动。这引发了位错从铝侧迁移到镁侧,从而改变了主要的 CLS 机制。这项研究有望加速铝/镁复合材料和其他类似的催化裂化/氢氯化物复合材料系统的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of biochar and its metal oxide composites and application on next sustainable electrodes for energy storage devices Role of molecular packing in RTP features of positional isomers: The case study of triimidazo-triazine functionalized with ethynyl pyridine moieties Effects of sputtering process and annealing on the microstructure, crystallization orientation and piezoelectric properties of ZnO films Tunable nonlinear optical properties in polyaniline-multiwalled carbon nanotube (PANI-MWCNT) system probed under pulsed Nd:YAG laser Liquid-phase deposition of α-Fe2O3/n-Si heterojunction thin film photoanode for water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1