Synthesis of biochar and its metal oxide composites and application on next sustainable electrodes for energy storage devices

Bruna Andressa Bregadiolli , Glauco Meireles Mascarenhas Morandi Lustosa , João Vitor Paulin , Waldir Antonio Bizzo , Lauro Tatsuo Kubota , Shuguang Deng , Talita Mazon
{"title":"Synthesis of biochar and its metal oxide composites and application on next sustainable electrodes for energy storage devices","authors":"Bruna Andressa Bregadiolli ,&nbsp;Glauco Meireles Mascarenhas Morandi Lustosa ,&nbsp;João Vitor Paulin ,&nbsp;Waldir Antonio Bizzo ,&nbsp;Lauro Tatsuo Kubota ,&nbsp;Shuguang Deng ,&nbsp;Talita Mazon","doi":"10.1016/j.nxmate.2024.100444","DOIUrl":null,"url":null,"abstract":"<div><div>Biochar materials have been applied in energy storage due to their unique properties, such as high storage of ions, high conductivity, chemical stability and ease of production. Combining it with the high specific capacitance could be a promising strategy to develop devices and improve the properties. Through a hydrothermal technique the biochar powders were synthesized from sugarcane biomass. An acid pretreatment was carried out before and after the graphitization process aiming to obtain carbon materials with high surface area and porosity. The morphological characterization reveals powders with pores of submicrometer diameter. For the pure biochar it was determined a superficial area of 477.66 m<sup>2</sup>.g<sup>−1</sup> with a median pore size of 42.92 Å and a pore volume of 0.21 cm<sup>3</sup>.g<sup>−1</sup>. A carbon-based paste was then prepared to deposit on nickel foam and obtain the electrodes. In a 3-electrode system characterization, biochar has showed higher specific capacitance than the metal oxide composites due to higher surface area and higher medium pore diameter. It was calculated a resistance of 2.7 Ω, a capacitance of 446 mF.g<sup>−1</sup>, a power density of 46.2 W.kg<sup>−1</sup> and an energy density of 1.8 W.h.kg<sup>−1</sup>. These results indicate the potential use of biochar-based electrodes with high electrical conductivity and improved surface area to obtain higher capacitance properties for development of advanced devices.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"7 ","pages":"Article 100444"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824003423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biochar materials have been applied in energy storage due to their unique properties, such as high storage of ions, high conductivity, chemical stability and ease of production. Combining it with the high specific capacitance could be a promising strategy to develop devices and improve the properties. Through a hydrothermal technique the biochar powders were synthesized from sugarcane biomass. An acid pretreatment was carried out before and after the graphitization process aiming to obtain carbon materials with high surface area and porosity. The morphological characterization reveals powders with pores of submicrometer diameter. For the pure biochar it was determined a superficial area of 477.66 m2.g−1 with a median pore size of 42.92 Å and a pore volume of 0.21 cm3.g−1. A carbon-based paste was then prepared to deposit on nickel foam and obtain the electrodes. In a 3-electrode system characterization, biochar has showed higher specific capacitance than the metal oxide composites due to higher surface area and higher medium pore diameter. It was calculated a resistance of 2.7 Ω, a capacitance of 446 mF.g−1, a power density of 46.2 W.kg−1 and an energy density of 1.8 W.h.kg−1. These results indicate the potential use of biochar-based electrodes with high electrical conductivity and improved surface area to obtain higher capacitance properties for development of advanced devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of biochar and its metal oxide composites and application on next sustainable electrodes for energy storage devices Role of molecular packing in RTP features of positional isomers: The case study of triimidazo-triazine functionalized with ethynyl pyridine moieties Effects of sputtering process and annealing on the microstructure, crystallization orientation and piezoelectric properties of ZnO films Tunable nonlinear optical properties in polyaniline-multiwalled carbon nanotube (PANI-MWCNT) system probed under pulsed Nd:YAG laser Liquid-phase deposition of α-Fe2O3/n-Si heterojunction thin film photoanode for water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1