{"title":"Insights into corrosion behavior of Mg alloys containing long-period stacking ordered structure in chloride and sulfate media","authors":"Jinshu Xie , Zhi Zhang , Hao Dong , Jinghuai Zhang , Xu-Sheng Yang , Zijian Yu , Ruizhi Wu","doi":"10.1016/j.corsci.2024.112592","DOIUrl":null,"url":null,"abstract":"<div><div>Micro-galvanic corrosion, driven by potential differences between strengthening phases and the matrix, is a major concern for Mg alloys in NaCl solution. Intriguingly, we find that the micro-galvanic corrosion, dominated by the nobler 18R-LPSO phase, is suppressed in Na<sub>2</sub>SO<sub>4</sub> solution, where both the LPSO and Mg matrix are corroded simultaneously. Since the LPSO phase contains more Er/Zn atoms than matrix, higher proportion of Er<sup>3+</sup>/Zn<sup>2+</sup> could be released in SO<sub>4</sub><sup>2-</sup>-affected corrosion, eventually forming a more protective corrosion film containing Er<sub>2</sub>O<sub>3</sub>/ZnO/ZnS. These findings highlight the specific corrosion behavior of Mg alloys in Na<sub>2</sub>SO<sub>4</sub> solution, offering valuable insights for corrosion mitigation strategies.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"243 ","pages":"Article 112592"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24007881","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Micro-galvanic corrosion, driven by potential differences between strengthening phases and the matrix, is a major concern for Mg alloys in NaCl solution. Intriguingly, we find that the micro-galvanic corrosion, dominated by the nobler 18R-LPSO phase, is suppressed in Na2SO4 solution, where both the LPSO and Mg matrix are corroded simultaneously. Since the LPSO phase contains more Er/Zn atoms than matrix, higher proportion of Er3+/Zn2+ could be released in SO42--affected corrosion, eventually forming a more protective corrosion film containing Er2O3/ZnO/ZnS. These findings highlight the specific corrosion behavior of Mg alloys in Na2SO4 solution, offering valuable insights for corrosion mitigation strategies.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.