Bi-directional homogenization method for the design of multi-scale mechanical metamaterials

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composite Structures Pub Date : 2024-11-15 DOI:10.1016/j.compstruct.2024.118678
Senlin Huo , Bingxiao Du , Yong Zhao , Xiaoqian Chen
{"title":"Bi-directional homogenization method for the design of multi-scale mechanical metamaterials","authors":"Senlin Huo ,&nbsp;Bingxiao Du ,&nbsp;Yong Zhao ,&nbsp;Xiaoqian Chen","doi":"10.1016/j.compstruct.2024.118678","DOIUrl":null,"url":null,"abstract":"<div><div>Inverse Homogenization (IH) is a classical concept for the Topology Optimization (TO) of metamaterials. Traditional IH design methods are mainly the single-scale TO within a Representative Volume Element (RVE), suffering from challenges like design inefficiency and under-utilization of the design space. To address the problems, a Bi-Directional Homogenization (BDH) method based on the multi-scale TO principle is proposed for the design of mechanical metamaterials. The general design framework includes a forward homogenization process from the microscale to the mesoscale, and an inverse design process from the macroscale to the mesoscale. Firstly, at the microscale, the Graded Microstructures (GMs) are generated via a multi-cut level set method. Then, by varying the relative densities, the microstructure instances are sampled and the mesoscopic equivalent properties are computed using the homogenization method. After that, a spectral decomposition-based interpolation model is used to predict the relationship between the relative densities and the elastic tensors. These preparations allow for the mesoscopic optimization of the GMs distribution, and the reconstruction of the graded multi-scale metamaterial structures by using a mapping transformation on the density field. Various types of auxetic metamaterials are performed to demonstrate the effectiveness and versatility of the proposed method.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"353 ","pages":"Article 118678"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008067","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse Homogenization (IH) is a classical concept for the Topology Optimization (TO) of metamaterials. Traditional IH design methods are mainly the single-scale TO within a Representative Volume Element (RVE), suffering from challenges like design inefficiency and under-utilization of the design space. To address the problems, a Bi-Directional Homogenization (BDH) method based on the multi-scale TO principle is proposed for the design of mechanical metamaterials. The general design framework includes a forward homogenization process from the microscale to the mesoscale, and an inverse design process from the macroscale to the mesoscale. Firstly, at the microscale, the Graded Microstructures (GMs) are generated via a multi-cut level set method. Then, by varying the relative densities, the microstructure instances are sampled and the mesoscopic equivalent properties are computed using the homogenization method. After that, a spectral decomposition-based interpolation model is used to predict the relationship between the relative densities and the elastic tensors. These preparations allow for the mesoscopic optimization of the GMs distribution, and the reconstruction of the graded multi-scale metamaterial structures by using a mapping transformation on the density field. Various types of auxetic metamaterials are performed to demonstrate the effectiveness and versatility of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计多尺度机械超材料的双向均质化方法
反均质(IH)是超材料拓扑优化(TO)的一个经典概念。传统的 IH 设计方法主要是在代表体积元素(RVE)内进行单尺度 TO,存在设计效率低、设计空间利用不足等问题。针对这些问题,我们提出了一种基于多尺度 TO 原理的双向均质化(BDH)方法,用于机械超材料的设计。总体设计框架包括从微观尺度到中观尺度的正向均质化过程,以及从宏观尺度到中观尺度的反向设计过程。首先,在微观尺度上,通过多切水平集方法生成分级微结构(GMs)。然后,通过改变相对密度,对微结构实例进行采样,并使用均质化方法计算中观等效特性。然后,使用基于谱分解的插值模型来预测相对密度和弹性张量之间的关系。通过这些准备工作,可以对 GMs 分布进行介观优化,并利用密度场上的映射变换重建分级多尺度超材料结构。为了证明所提方法的有效性和多功能性,我们对各种类型的辅助超材料进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
期刊最新文献
Structure failure and strength evaluation of honeycomb-based sandwich composites under variable hydro-thermal-mechanical load Exploring deformability in 3D tufted composite reinforcements: Understanding bending behaviors in forming applications A comparative study on drilling characteristics of unidirectional thermosetting CF/epoxy and thermoplastic CF/PEEK composites Ultrasonic detection and evaluation of delamination defects in carbon fiber composites based on finite element simulation Lamb wave S0/A0 mode conversion for imaging the internal structure of composite panel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1