Kinetic energy budgets of triple-components in a cylinder wake

IF 2.4 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Journal of Hydro-environment Research Pub Date : 2024-11-15 DOI:10.1016/j.jher.2024.11.001
Kwanho Ree , Jin Hwan Hwang
{"title":"Kinetic energy budgets of triple-components in a cylinder wake","authors":"Kwanho Ree ,&nbsp;Jin Hwan Hwang","doi":"10.1016/j.jher.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>The velocity fields of wakes after a cylinder were disintegrated using a conventional triple decomposition method to investigate the kinetic energy transfer mechanism among the mean flow, unsteady wave, and turbulence. Two-dimensional and two-component (2D-2C) velocity fields were measured using particle image velocimetry (PIV) in a rectangular cross-section water tunnel. For analysis, the proper orthogonal decomposition (POD) was applied to the velocity fields, and it was found that the combination of its first two modes constructs the unsteady coherent motion – in other words, wavelike motion within the cylinder wake. The investigation of the kinetic energy budget also revealed that the dissipation in the regime of coherent motion is negligible, as it is in wave propagation, unlike in the regime of turbulence. Furthermore, the turbulence energy produced by coherent waves was significantly smaller than the wave or turbulence energy directly produced by mean flow. Lastly, in conjunction with the kinetic energy budget, the momentum equation can explain the large deformations of mean velocity in more detail. As a result, the importance of negative production and energy transport has been highlighted.</div></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"58 ","pages":"Pages 19-35"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157064432400056X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The velocity fields of wakes after a cylinder were disintegrated using a conventional triple decomposition method to investigate the kinetic energy transfer mechanism among the mean flow, unsteady wave, and turbulence. Two-dimensional and two-component (2D-2C) velocity fields were measured using particle image velocimetry (PIV) in a rectangular cross-section water tunnel. For analysis, the proper orthogonal decomposition (POD) was applied to the velocity fields, and it was found that the combination of its first two modes constructs the unsteady coherent motion – in other words, wavelike motion within the cylinder wake. The investigation of the kinetic energy budget also revealed that the dissipation in the regime of coherent motion is negligible, as it is in wave propagation, unlike in the regime of turbulence. Furthermore, the turbulence energy produced by coherent waves was significantly smaller than the wave or turbulence energy directly produced by mean flow. Lastly, in conjunction with the kinetic energy budget, the momentum equation can explain the large deformations of mean velocity in more detail. As a result, the importance of negative production and energy transport has been highlighted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
圆柱体尾流中三重分量的动能预算
采用传统的三重分解法对圆柱体后的湍流速度场进行了分解,以研究平均流、不稳定波和湍流之间的动能传递机制。在矩形截面水洞中使用粒子图像测速仪(PIV)测量了二维和双分量(2D-2C)速度场。为了进行分析,对速度场进行了适当的正交分解(POD),结果发现其前两个模式的组合构建了非稳态相干运动--换句话说,即圆柱体尾流内的波状运动。对动能预算的研究还发现,在相干运动状态下的耗散可以忽略不计,这与波的传播状态一样,与湍流状态不同。此外,相干波产生的湍流能明显小于平均流直接产生的波或湍流能。最后,结合动能预算,动量方程可以更详细地解释平均速度的大变形。因此,负能量产生和能量传输的重要性得到了强调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydro-environment Research
Journal of Hydro-environment Research ENGINEERING, CIVIL-ENVIRONMENTAL SCIENCES
CiteScore
5.80
自引率
0.00%
发文量
34
审稿时长
98 days
期刊介绍: The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers. Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.
期刊最新文献
Spatial and temporal variations in temperature and precipitation trends in South Korea over the past half-century (1974–2023) using innovative trend analysis Kinetic energy budgets of triple-components in a cylinder wake Editorial Board Effect of submergence of sacrificial piles on local scour reduction at a bridge pier under U-type debris jam conditions Drag coefficients and water surface profiles in channels with arrays of linear rigid emergent vegetation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1