A Sensitive H2O2 Electrochemical Sensor Based on Pd Nanoparticles Decorated Ti2NTx MXene

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY ChemistrySelect Pub Date : 2024-11-22 DOI:10.1002/slct.202404593
Yuan Zhang, Liang He, Xiaolu Sun, Chenyu Yang, Jun Li
{"title":"A Sensitive H2O2 Electrochemical Sensor Based on Pd Nanoparticles Decorated Ti2NTx MXene","authors":"Yuan Zhang,&nbsp;Liang He,&nbsp;Xiaolu Sun,&nbsp;Chenyu Yang,&nbsp;Jun Li","doi":"10.1002/slct.202404593","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), a prominent reactive oxygen species in organisms, plays a vital role in regulating fundamental biological activities and actively participates in cellular metabolism and stress response. Gaining insights into the quantifying H<sub>2</sub>O<sub>2</sub> within living organisms has significant implications for human health research. The 2D transition metal nitride (Ti<sub>2</sub>NT<i><sub>x</sub></i> MXene) exhibits a thin crystal structure and enhanced electrical conductivity. A simple electrochemical sensing method for H<sub>2</sub>O<sub>2</sub> is presented by employing palladium modification on Ti<sub>2</sub>NT<i><sub>x</sub></i> MXene. Characterization analysis confirmed the successful etching of the Ti<sub>2</sub>AlN MAX phase into accordion-like morphology of Ti<sub>2</sub>NT<i><sub>x</sub></i> MXene by Li<sup>+</sup> intercalation, and Pd NPs were uniformly dispersed onto the Ti<sub>2</sub>NT<i><sub>x</sub></i> MXene nanosheets. Electrochemical analysis revealed that optimal electrochemical detection performance for H<sub>2</sub>O<sub>2</sub> was achieved when Ti<sub>2</sub>NT<i><sub>x</sub></i> MXene had an optimum Pd modification amount (2 wt%) at −0.4 V, exhibiting excellent stability at low concentrations. The detection limit was determined to be 0.72 µM, with a calculated sensitivity of 0.825 µA µM<sup>−1</sup> cm<sup>−2</sup>. This study establishes the optimal amount of Pd modification and identifies Pd-Ti<sub>2</sub>NT<i><sub>x</sub></i> MXene as a promising candidate for electrochemical sensing applications targeting H<sub>2</sub>O<sub>2</sub>.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"9 44","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202404593","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen peroxide (H2O2), a prominent reactive oxygen species in organisms, plays a vital role in regulating fundamental biological activities and actively participates in cellular metabolism and stress response. Gaining insights into the quantifying H2O2 within living organisms has significant implications for human health research. The 2D transition metal nitride (Ti2NTx MXene) exhibits a thin crystal structure and enhanced electrical conductivity. A simple electrochemical sensing method for H2O2 is presented by employing palladium modification on Ti2NTx MXene. Characterization analysis confirmed the successful etching of the Ti2AlN MAX phase into accordion-like morphology of Ti2NTx MXene by Li+ intercalation, and Pd NPs were uniformly dispersed onto the Ti2NTx MXene nanosheets. Electrochemical analysis revealed that optimal electrochemical detection performance for H2O2 was achieved when Ti2NTx MXene had an optimum Pd modification amount (2 wt%) at −0.4 V, exhibiting excellent stability at low concentrations. The detection limit was determined to be 0.72 µM, with a calculated sensitivity of 0.825 µA µM−1 cm−2. This study establishes the optimal amount of Pd modification and identifies Pd-Ti2NTx MXene as a promising candidate for electrochemical sensing applications targeting H2O2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于钯纳米颗粒装饰 Ti2NTx MXene 的灵敏 H2O2 电化学传感器
过氧化氢(H2O2)是生物体内一种重要的活性氧,在调节基本生物活动方面发挥着重要作用,并积极参与细胞代谢和应激反应。深入了解生物体内 H2O2 的量化对人类健康研究具有重要意义。二维过渡金属氮化物(Ti2NTx MXene)具有薄晶体结构和更强的导电性。通过对 Ti2NTx MXene 进行钯修饰,提出了一种简单的 H2O2 电化学传感方法。表征分析证实,通过 Li+ 插层,Ti2NTx MXene 成功地将 Ti2AlN MAX 相蚀刻成风琴状形貌,并且 Pd NPs 均匀地分散在 Ti2NTx MXene 纳米片上。电化学分析表明,当 Ti2NTx MXene 的最佳 Pd 改性量(2 wt%)为 -0.4 V 时,其对 H2O2 的电化学检测性能最佳,在低浓度下表现出优异的稳定性。检测限被确定为 0.72 µM,计算灵敏度为 0.825 µA µM-1 cm-2。这项研究确定了钯修饰的最佳量,并将 Pd-Ti2NTx MXene 确定为针对 H2O2 的电化学传感应用的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
期刊最新文献
Microwave Assisted One-Pot Synthesis of Fused[1,2,3]Triazolo[4′,5′:3,4]Pyrrolo[1,2-c]Pyrimidines as Potent Anticancer Agents Synthesis, Antimicrobial, and Antioxidant Evaluation of Some New Thiazole-Schiff Base Derivatives Charge Separated ZnNb2O6/SnO2 Type-II Heterojunction Photocatalyst for Enhanced Degradation of Emerging Contaminants Removal of Chromium from Wastewater Through the Formation of a Layered Double Hydroxide Material for Further Use as a Photocatalyst Two Barriers Against the Cracking of Phase Change Materials Based on Gel Skeleton
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1