Process Intensification via Structured Catalysts: Production of Sugar Alcohols

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemie Ingenieur Technik Pub Date : 2024-10-22 DOI:10.1002/cite.202400087
Prof. Tapio Salmi, German Araujo Barahona, Dr. Ali Najarnezhadmashhadi, Dr. Catarina Braz, Alberto Goicoechea Torres, Maria Ciaramella, Emilia Ares, Prof. Vincenzo Russo, Prof. Juan Garcia Serna, Dr. Kari Eränen, Prof. Johan Wärnå, Prof. Henri Matos, Prof. Dmitry Murzin
{"title":"Process Intensification via Structured Catalysts: Production of Sugar Alcohols","authors":"Prof. Tapio Salmi,&nbsp;German Araujo Barahona,&nbsp;Dr. Ali Najarnezhadmashhadi,&nbsp;Dr. Catarina Braz,&nbsp;Alberto Goicoechea Torres,&nbsp;Maria Ciaramella,&nbsp;Emilia Ares,&nbsp;Prof. Vincenzo Russo,&nbsp;Prof. Juan Garcia Serna,&nbsp;Dr. Kari Eränen,&nbsp;Prof. Johan Wärnå,&nbsp;Prof. Henri Matos,&nbsp;Prof. Dmitry Murzin","doi":"10.1002/cite.202400087","DOIUrl":null,"url":null,"abstract":"<p>With the aid of structured catalysts and reactors, such as monoliths, solid foams, and 3D printed structures, the limitations of conventional slurry and packed-bed reactors can be surmounted. Multiphase mathematical models were presented for solid foam structures and the models were verified for the hydrogenation of arabinose, galactose, and xylose to the corresponding sugar alcohols. High product selectivities were obtained in batch and continuous experiments. Three kinetic models were considered: a competitive adsorption model, a semi-competitive adsorption model as well as a non-competitive adsorption model for sugar monomers and hydrogen. The models gave a good reproduction of the data, but the semi-competitive adsorption model was the most plausible one because of the size difference between adsorbed sugar and hydrogen molecules.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 12","pages":"1642-1656"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400087","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Ingenieur Technik","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the aid of structured catalysts and reactors, such as monoliths, solid foams, and 3D printed structures, the limitations of conventional slurry and packed-bed reactors can be surmounted. Multiphase mathematical models were presented for solid foam structures and the models were verified for the hydrogenation of arabinose, galactose, and xylose to the corresponding sugar alcohols. High product selectivities were obtained in batch and continuous experiments. Three kinetic models were considered: a competitive adsorption model, a semi-competitive adsorption model as well as a non-competitive adsorption model for sugar monomers and hydrogen. The models gave a good reproduction of the data, but the semi-competitive adsorption model was the most plausible one because of the size difference between adsorbed sugar and hydrogen molecules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过结构催化剂强化工艺:糖醇生产
借助结构化催化剂和反应器(如整体、固体泡沫和三维打印结构),可以克服传统浆料和填料床反应器的局限性。我们提出了固体泡沫结构的多相数学模型,并对阿拉伯糖、半乳糖和木糖氢化成相应糖醇的模型进行了验证。批量和连续实验均获得了较高的产物选择性。实验考虑了三种动力学模型:竞争性吸附模型、半竞争性吸附模型以及糖单体和氢的非竞争性吸附模型。这些模型都很好地再现了数据,但半竞争吸附模型是最合理的模型,因为吸附的糖分子和氢分子之间存在大小差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemie Ingenieur Technik
Chemie Ingenieur Technik 工程技术-工程:化工
CiteScore
3.40
自引率
15.80%
发文量
601
审稿时长
3-6 weeks
期刊介绍: Die Chemie Ingenieur Technik ist die wohl angesehenste deutschsprachige Zeitschrift für Verfahrensingenieure, technische Chemiker, Apparatebauer und Biotechnologen. Als Fachorgan von DECHEMA, GDCh und VDI-GVC gilt sie als das unverzichtbare Forum für den Erfahrungsaustausch zwischen Forschern und Anwendern aus Industrie, Forschung und Entwicklung. Wissenschaftlicher Fortschritt und Praxisnähe: Eine Kombination, die es nur in der CIT gibt!
期刊最新文献
Überblick Inhalt: Chem. Eng. Technol. 1-2/2025 Titelbild Chem. Ing. Tech. 1-2/2025 Meyer-Galow-Preis 2025 für Innovationen für die Betriebssicherheit moderner Lithium-Ionen-Batterien Inhalt: Chem. Ing. Tech. 1-2/2025 Neuer Kuratoriums-Vorsitz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1