{"title":"Nanocodelivery of 5-Fluorouracil and Curcumin by RGD-Decorated Nanoliposomes Achieves Synergistic Chemotherapy for Breast Cancer","authors":"Reza Mahmoudi, Somayeh Mohammadi, Rouzbeh Mahmoudi, Mohamad Hassan Fouani, Maryam Tajali Ardakani, Amin Hadi, Mohsen Nikseresht, Mehrzad Jafari Barmak, Farzad Karimpour, Hassan Bardania","doi":"10.1049/nbt2/4959295","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In the present study, arginine–glycine–aspartic acid peptide (RGD) surface functionalized liposomes (Lips) were formulated for the concomitant targeted delivery of two antineoplastic drugs, namely curcumin (Cur) and 5-fluorouracil (5FU) to breast cancer cells. The Lips’ measured size values where 50–100 nm by transmission electron microscopy (TEM) and 169 ± 10.2 nm by dynamic light scattering (DLS), which fall within the desired range required for drug delivery purposes. In this study, we assessed the antineoplastic effects of various liposomal formulations for the codelivery of Cur and 5FU to MCF-7 breast cancer cells. We evaluated two liposomal formulations (Lip–Cur–5FU) and (Lip–Cur–5FU–RGD). The treatment of MCF-7 cells with 32 µg/mL of Cur exhibited a significant (<i>p</i> < 0.0001) drop in cell viability among the three formulations, namely Cur and 5Fu in the free form (Lip–Cur–5FU) and liposomal form (Lip–Cur–5FU–RGD); the least viability rate (9.91% ± 1.65%) corresponded to the RGD functionalized concomitantly Cur and 5Fu loaded Lips (Lip–Cur–5FU–RGD) formulation. On the other hand, liposomal Cur increased the rate of early apoptotic cell by 4.88% without altering the rate of late apoptotic cells. Furthermore, the concomitant treatment of MCF-7 cells with Cur and 5FU enhanced the overall apoptosis rate, where Cur–5FU in the RGD functionalized-liposomal form induced the highest (16.8%) apoptosis rate, while other Cur–5FU formulations, free and nonfunctionalized liposomal form, induced lower apoptosis rates (10.4% and 10.9%, respectively). Collectively our results demonstrated that the implementation of RGD-functionalized Lips for the concomitant delivery of Cur and 5FU enhanced their therapeutic efficacy against this breast cancer model.</p>\n </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2024 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2/4959295","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2/4959295","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, arginine–glycine–aspartic acid peptide (RGD) surface functionalized liposomes (Lips) were formulated for the concomitant targeted delivery of two antineoplastic drugs, namely curcumin (Cur) and 5-fluorouracil (5FU) to breast cancer cells. The Lips’ measured size values where 50–100 nm by transmission electron microscopy (TEM) and 169 ± 10.2 nm by dynamic light scattering (DLS), which fall within the desired range required for drug delivery purposes. In this study, we assessed the antineoplastic effects of various liposomal formulations for the codelivery of Cur and 5FU to MCF-7 breast cancer cells. We evaluated two liposomal formulations (Lip–Cur–5FU) and (Lip–Cur–5FU–RGD). The treatment of MCF-7 cells with 32 µg/mL of Cur exhibited a significant (p < 0.0001) drop in cell viability among the three formulations, namely Cur and 5Fu in the free form (Lip–Cur–5FU) and liposomal form (Lip–Cur–5FU–RGD); the least viability rate (9.91% ± 1.65%) corresponded to the RGD functionalized concomitantly Cur and 5Fu loaded Lips (Lip–Cur–5FU–RGD) formulation. On the other hand, liposomal Cur increased the rate of early apoptotic cell by 4.88% without altering the rate of late apoptotic cells. Furthermore, the concomitant treatment of MCF-7 cells with Cur and 5FU enhanced the overall apoptosis rate, where Cur–5FU in the RGD functionalized-liposomal form induced the highest (16.8%) apoptosis rate, while other Cur–5FU formulations, free and nonfunctionalized liposomal form, induced lower apoptosis rates (10.4% and 10.9%, respectively). Collectively our results demonstrated that the implementation of RGD-functionalized Lips for the concomitant delivery of Cur and 5FU enhanced their therapeutic efficacy against this breast cancer model.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf