Nanotechnology at the crossroads of stem cell medicine.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Biomaterials Science Pub Date : 2024-11-25 DOI:10.1039/d4bm01257g
Sweny Jain, Jay Bhatt, Sharad Gupta, Dhiraj Devidas Bhatia
{"title":"Nanotechnology at the crossroads of stem cell medicine.","authors":"Sweny Jain, Jay Bhatt, Sharad Gupta, Dhiraj Devidas Bhatia","doi":"10.1039/d4bm01257g","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology in stem cell medicine is an interdisciplinary field which has gained a lot of interest recently. This domain addresses key challenges associated with stem cell medicine such as cell isolation, targeted delivery, and tracking. Nanotechnology-based approaches, including magnetic cell sorting, fluorescent tagging, and drug or biomolecule conjugation for delivery, have enhanced precision in stem cell isolation and guided cell migration, increasing the therapeutic potential. Recent studies have focused on using nanomaterials and scaffolds to drive stem cell differentiation by activating specific molecular pathways, achieved through embedding biomolecules within the scaffold or through the scaffold's material composition and structure alone. These innovations hold promise in therapeutic applications across various diseases, including cancer stem cell targeting, neurodegenerative disorders, pre-eclampsia, cardiovascular conditions, and organoid development. This review examines recent advancements in the field, explores potential applications like biosensors and nanochips, and highlights the challenges and research gaps.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01257g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Nanotechnology in stem cell medicine is an interdisciplinary field which has gained a lot of interest recently. This domain addresses key challenges associated with stem cell medicine such as cell isolation, targeted delivery, and tracking. Nanotechnology-based approaches, including magnetic cell sorting, fluorescent tagging, and drug or biomolecule conjugation for delivery, have enhanced precision in stem cell isolation and guided cell migration, increasing the therapeutic potential. Recent studies have focused on using nanomaterials and scaffolds to drive stem cell differentiation by activating specific molecular pathways, achieved through embedding biomolecules within the scaffold or through the scaffold's material composition and structure alone. These innovations hold promise in therapeutic applications across various diseases, including cancer stem cell targeting, neurodegenerative disorders, pre-eclampsia, cardiovascular conditions, and organoid development. This review examines recent advancements in the field, explores potential applications like biosensors and nanochips, and highlights the challenges and research gaps.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
处于干细胞医学十字路口的纳米技术。
干细胞医学中的纳米技术是一个跨学科领域,近来备受关注。这一领域解决了与干细胞医学相关的关键难题,如细胞分离、定向输送和跟踪。以纳米技术为基础的方法,包括磁性细胞分拣、荧光标记和药物或生物大分子连接输送,提高了干细胞分离和引导细胞迁移的精确度,增加了治疗潜力。最近的研究侧重于使用纳米材料和支架,通过在支架内嵌入生物分子或仅通过支架的材料成分和结构,激活特定分子途径,从而驱动干细胞分化。这些创新有望应用于各种疾病的治疗,包括癌症干细胞靶向、神经退行性疾病、子痫前期、心血管疾病和类器官发育。本综述审视了这一领域的最新进展,探讨了生物传感器和纳米芯片等潜在应用,并强调了面临的挑战和研究空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
期刊最新文献
Nanotechnology at the crossroads of stem cell medicine. Construction of strontium-loaded injectable lubricating hydrogel and its role in promoting repair of cartilage defects. Thermoresponsive degradable hydrogels with renewable surfaces for protein removal. Aliphatic polycarbonates with acid degradable ketal side groups as multi-pH-responsive immunodrug nanocarriers. Chiral recognition of amino acids through homochiral metallacycle [ZnCl2L]2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1