3D bioprinted poly(lactic acid) scaffolds infused with curcumin-loaded nanostructured lipid carriers: a promising approach for skin regeneration

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Biomaterials Science Pub Date : 2025-01-29 DOI:10.1039/D4BM01550A
Renuka Vijayaraghavan, M. Vidyavathi, R. V. Suresh Kumar, Sravanthi Loganathan and Ravi Babu Valapa
{"title":"3D bioprinted poly(lactic acid) scaffolds infused with curcumin-loaded nanostructured lipid carriers: a promising approach for skin regeneration","authors":"Renuka Vijayaraghavan, M. Vidyavathi, R. V. Suresh Kumar, Sravanthi Loganathan and Ravi Babu Valapa","doi":"10.1039/D4BM01550A","DOIUrl":null,"url":null,"abstract":"<p >Nanotechnology and 3D bioprinted scaffolds are revolutionizing the field of wound healing and skin regeneration. By facilitating proper cellular movement and providing a customizable structure that replicates the extracellular matrix, such technologies not only expedite the healing process but also ensure the seamless integration of new skin layers, enhancing tissue repair and promoting overall cell growth. This study centres on the creation and assessment of a nanostructured lipid carrier containing curcumin (CNLC), which is integrated into a 3D bioprinted PLA scaffold system. The goal is to investigate its potential as a vehicle for delivering poorly soluble curcumin for enhanced wound healing. The developed CNLC exhibited an oval morphology and average particle size of 292 nm. The entrapment efficiency (EE) was 81.37 ± 0.85%, and the drug loading capacity was 6.59 ± 1.61%. CNLC was then integrated into PLA-based 3D bioprinted scaffolds, and physicochemical analyses were conducted to evaluate their properties. Cell viability studies carried out using fibroblast cells demonstrated that the PLA/CNLC scaffolds are non-cytotoxic. <em>In vivo</em> experiments showed that the PLA/CNLC scaffolds exhibited complete wound contraction and closure of full-thickness wounds within a period of 21 days. The findings confirmed the scaffold's capacity as a tool for accelerating wound healing. The research emphasises the need for using biomimetic 3D printed scaffold materials and the promise of nanobiotechnology in enhancing treatment efficacy.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 5","pages":" 1286-1303"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d4bm01550a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Nanotechnology and 3D bioprinted scaffolds are revolutionizing the field of wound healing and skin regeneration. By facilitating proper cellular movement and providing a customizable structure that replicates the extracellular matrix, such technologies not only expedite the healing process but also ensure the seamless integration of new skin layers, enhancing tissue repair and promoting overall cell growth. This study centres on the creation and assessment of a nanostructured lipid carrier containing curcumin (CNLC), which is integrated into a 3D bioprinted PLA scaffold system. The goal is to investigate its potential as a vehicle for delivering poorly soluble curcumin for enhanced wound healing. The developed CNLC exhibited an oval morphology and average particle size of 292 nm. The entrapment efficiency (EE) was 81.37 ± 0.85%, and the drug loading capacity was 6.59 ± 1.61%. CNLC was then integrated into PLA-based 3D bioprinted scaffolds, and physicochemical analyses were conducted to evaluate their properties. Cell viability studies carried out using fibroblast cells demonstrated that the PLA/CNLC scaffolds are non-cytotoxic. In vivo experiments showed that the PLA/CNLC scaffolds exhibited complete wound contraction and closure of full-thickness wounds within a period of 21 days. The findings confirmed the scaffold's capacity as a tool for accelerating wound healing. The research emphasises the need for using biomimetic 3D printed scaffold materials and the promise of nanobiotechnology in enhancing treatment efficacy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
期刊最新文献
Enhancing nano-immunotherapy of cancer through cGAS-STING pathway modulation. Polydopamine as a versatile optical indicator for colorimetric and fluorescence-based biosensing. Tumor signal amplification and immune decoy strategy using bacterial membrane-coated nanoparticles for immunotherapy. Recent advances in non-invasive in vivo tracking of cell-based cancer immunotherapies. Biomimetic basement membranes: advances in materials, preparation techniques, and applications in in vitro biological models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1