Unravelling the endosomal escape of pH-responsive nanoparticles using the split luciferase endosomal escape quantification assay.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Biomaterials Science Pub Date : 2025-02-03 DOI:10.1039/d4bm01433b
Umeka Nayanathara, Fan Yang, Changhe Zhang, Yufu Wang, Bruna Rossi Herling, Samuel A Smith, Maximilian A Beach, Angus P R Johnston, Georgina K Such
{"title":"Unravelling the endosomal escape of pH-responsive nanoparticles using the split luciferase endosomal escape quantification assay.","authors":"Umeka Nayanathara, Fan Yang, Changhe Zhang, Yufu Wang, Bruna Rossi Herling, Samuel A Smith, Maximilian A Beach, Angus P R Johnston, Georgina K Such","doi":"10.1039/d4bm01433b","DOIUrl":null,"url":null,"abstract":"<p><p>Endosomal escape is a major bottleneck for efficient intracellular delivery of therapeutic cargoes, particularly for macromolecular biological cargoes such as peptides, proteins and nucleic acids. pH-responsive polymeric nanoparticles that can respond to changes in the pH of intracellular microenvironments have generated substantial interest in navigating the endosomal barrier. In this study, we applied the highly sensitive split luciferase endosomal escape quantification (SLEEQ) assay to better understand the endosomal escape efficiency of dual component pH-responsive nanoparticles based on poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) and poly(2-(diisopropylamino) ethyl methacrylate) (PDPAEMA). Previous work investigated the use of a disulfide-linked HiBiT peptide conjugate encapsulated within the nanoparticle core, which upon meeting the LgBiT protein in the cytosol demonstrated luminescence which could be quantified to assess endosomal escape. However, we were interested in understanding whether this assay could be tuned to understand the endosomal escape of both a therapeutic cargo and a larger carrier. To achieve this, we designed two different HiBiT conjugates by applying a carbonylacrylic-functionalized thioether (non-cleavable) linker, which is more stable in endosomes, and a less stable disulfide (cleavable) linker to attach HiBiT to the nanoparticle core. Nanoparticles with disulfide-linked HiBiT demonstrated a higher endosomal escape efficiency of 6-7%, whereas thioether-linked HiBiT demonstrated <3% endosomal escape efficiency with a twofold decrease in cytosolic delivery. This suggests that degradation of the disulfide linker in endosomes leads to cytosolic delivery of a free HiBiT cargo, while thioether-linked HiBiT polymers are larger and thus fewer HiBiT-carrier conjugates can escape the endosomes. Overall, this work demonstrates that the SLEEQ assay can be tuned to understand the cytosolic delivery of different components based on the use of different linker chemistries and thus it is an important tool for designing therapeutic delivery systems in the future.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01433b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Endosomal escape is a major bottleneck for efficient intracellular delivery of therapeutic cargoes, particularly for macromolecular biological cargoes such as peptides, proteins and nucleic acids. pH-responsive polymeric nanoparticles that can respond to changes in the pH of intracellular microenvironments have generated substantial interest in navigating the endosomal barrier. In this study, we applied the highly sensitive split luciferase endosomal escape quantification (SLEEQ) assay to better understand the endosomal escape efficiency of dual component pH-responsive nanoparticles based on poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) and poly(2-(diisopropylamino) ethyl methacrylate) (PDPAEMA). Previous work investigated the use of a disulfide-linked HiBiT peptide conjugate encapsulated within the nanoparticle core, which upon meeting the LgBiT protein in the cytosol demonstrated luminescence which could be quantified to assess endosomal escape. However, we were interested in understanding whether this assay could be tuned to understand the endosomal escape of both a therapeutic cargo and a larger carrier. To achieve this, we designed two different HiBiT conjugates by applying a carbonylacrylic-functionalized thioether (non-cleavable) linker, which is more stable in endosomes, and a less stable disulfide (cleavable) linker to attach HiBiT to the nanoparticle core. Nanoparticles with disulfide-linked HiBiT demonstrated a higher endosomal escape efficiency of 6-7%, whereas thioether-linked HiBiT demonstrated <3% endosomal escape efficiency with a twofold decrease in cytosolic delivery. This suggests that degradation of the disulfide linker in endosomes leads to cytosolic delivery of a free HiBiT cargo, while thioether-linked HiBiT polymers are larger and thus fewer HiBiT-carrier conjugates can escape the endosomes. Overall, this work demonstrates that the SLEEQ assay can be tuned to understand the cytosolic delivery of different components based on the use of different linker chemistries and thus it is an important tool for designing therapeutic delivery systems in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
期刊最新文献
A thiol-ene click-based strategy to customize injectable polymer-nanoparticle hydrogel properties for therapeutic delivery. Unravelling the endosomal escape of pH-responsive nanoparticles using the split luciferase endosomal escape quantification assay. 3D bioprinted ferret mesenchymal stem cell-laden cartilage grafts for laryngotracheal reconstruction in a ferret surgical model. 3D bioprinted poly(lactic acid) scaffolds infused with curcumin-loaded nanostructured lipid carriers: a promising approach for skin regeneration. Preparation and characterization of tildipirosin-loaded solid lipid nanoparticles for the treatment of intracellular Staphylococcus aureus infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1