Replacing traditional coffee appraisers with inductively coupled plasma - mass spectrometry (ICP-MS): From manual sensory evaluation to scientific analysis.
Xiaowei Pan, Wenjing Yan, Xiaopeng Wu, Jianzhi Ye, Yaohui Liang, Guoyan Zhan, Hao Dong, Wenzhen Liao, Xingfen Yang, Qi He
{"title":"Replacing traditional coffee appraisers with inductively coupled plasma - mass spectrometry (ICP-MS): From manual sensory evaluation to scientific analysis.","authors":"Xiaowei Pan, Wenjing Yan, Xiaopeng Wu, Jianzhi Ye, Yaohui Liang, Guoyan Zhan, Hao Dong, Wenzhen Liao, Xingfen Yang, Qi He","doi":"10.1016/j.fochx.2024.101980","DOIUrl":null,"url":null,"abstract":"<p><p>Scientific development provides opportunities to replace many traditional manual methods to achieve more accurate results and higher efficiency. To scientifically ascertain the geographical origin of coffee, this study develops a method for the rapid determination of 16 inorganic elements in coffee using microwave digestion combined with the ICP-MS internal standard method. Principal component analysis (PCA), Fisher discriminant analysis (FDA), and Partial least squares discriminant analysis (PLS-DA) are employed to analyze 40 coffee samples from three production areas of Pu'er, Baoshan, and Wanning. The results show that the linear correlation coefficients of the 16 elements in this method are above 0.999, the detection limits are in the range of 0.0004-0.63 mg/kg, the RSD of the precision experiments are 4.5 %-13.5 %, the recovery rate of the peak experiment is 86.0 %-96.3 % with the RSD of 1.1 %-8.8 %, and the results of the standard substances are within the range of standard values. Using the discriminant analysis of inorganic elements in coffee (FDA and PLS-DA), coffee origin discrimination was realized, and six key elements (Al, Mn, Fe, Cu, Na, and Ba) are identified as effective discriminatory indexes. Accordingly, a coffee origin discrimination model is established, and the overall accuracy discrimination rate of the discrimination model are all more than 90.0 %, and FDA > PLS-DA. The findings indicated that the method has good accuracy and reliability, is suitable for analyzing and determining multiple elements in sample components as targets, and may have a positive impact on the development of related industries.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"101980"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2024.101980","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Scientific development provides opportunities to replace many traditional manual methods to achieve more accurate results and higher efficiency. To scientifically ascertain the geographical origin of coffee, this study develops a method for the rapid determination of 16 inorganic elements in coffee using microwave digestion combined with the ICP-MS internal standard method. Principal component analysis (PCA), Fisher discriminant analysis (FDA), and Partial least squares discriminant analysis (PLS-DA) are employed to analyze 40 coffee samples from three production areas of Pu'er, Baoshan, and Wanning. The results show that the linear correlation coefficients of the 16 elements in this method are above 0.999, the detection limits are in the range of 0.0004-0.63 mg/kg, the RSD of the precision experiments are 4.5 %-13.5 %, the recovery rate of the peak experiment is 86.0 %-96.3 % with the RSD of 1.1 %-8.8 %, and the results of the standard substances are within the range of standard values. Using the discriminant analysis of inorganic elements in coffee (FDA and PLS-DA), coffee origin discrimination was realized, and six key elements (Al, Mn, Fe, Cu, Na, and Ba) are identified as effective discriminatory indexes. Accordingly, a coffee origin discrimination model is established, and the overall accuracy discrimination rate of the discrimination model are all more than 90.0 %, and FDA > PLS-DA. The findings indicated that the method has good accuracy and reliability, is suitable for analyzing and determining multiple elements in sample components as targets, and may have a positive impact on the development of related industries.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.