{"title":"Versatile Biopolymers for Advanced Lithium and Zinc Metal Batteries","authors":"Shimei Li, Chunyi Zhi","doi":"10.1002/adma.202413515","DOIUrl":null,"url":null,"abstract":"Lithium (Li) and zinc (Zn) metals are emerging as promising anode materials for next-generation rechargeable metal batteries due to their excellent electronic conductivity and high theoretical capacities. However, issues such as uneven metal ion deposition and uncontrolled dendrite growth result in poor electrochemical stability, limited cycle life, and rapid capacity decay. Biopolymers, recognized for their abundance, cost-effectiveness, biodegradability, tunable structures, and adjustable properties, offer a compelling solution to these challenges. This review systematically and comprehensively examines biopolymers and their protective mechanisms for Li and Zn metal anodes. It begins with an overview of biopolymers, detailing key types, their structures, and properties. The review then explores recent advancements in the application of biopolymers as artificial solid electrolyte interphases, electrolyte additives, separators, and solid-state electrolytes, emphasizing how their structural properties enhance protection mechanisms and improve electrochemical performance. Finally, perspectives on current challenges and future research directions in this evolving field are provided.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"257 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413515","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium (Li) and zinc (Zn) metals are emerging as promising anode materials for next-generation rechargeable metal batteries due to their excellent electronic conductivity and high theoretical capacities. However, issues such as uneven metal ion deposition and uncontrolled dendrite growth result in poor electrochemical stability, limited cycle life, and rapid capacity decay. Biopolymers, recognized for their abundance, cost-effectiveness, biodegradability, tunable structures, and adjustable properties, offer a compelling solution to these challenges. This review systematically and comprehensively examines biopolymers and their protective mechanisms for Li and Zn metal anodes. It begins with an overview of biopolymers, detailing key types, their structures, and properties. The review then explores recent advancements in the application of biopolymers as artificial solid electrolyte interphases, electrolyte additives, separators, and solid-state electrolytes, emphasizing how their structural properties enhance protection mechanisms and improve electrochemical performance. Finally, perspectives on current challenges and future research directions in this evolving field are provided.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.