{"title":"Observation and Manipulation of Self‐Chaos in Disordered Optical System","authors":"Haosen Li, Jialiang Lv, Hongtao Li, Hongda Ren, Yaozhong Yang, Guanghui Xu, Lixia Yang, Qi Yu, Zhiqiang Wang, Zhijia Hu, Benli Yu, Liang Lu","doi":"10.1002/lpor.202401402","DOIUrl":null,"url":null,"abstract":"Optical chaos is an attractive topic due to its unique dynamics and has been widely investigated in external‐cavity lasers. While chaotic behavior is hindered by undesired periodicity from external feedback. Although a self‐chaotic micro‐laser based on nonlinear interaction of internal modes can eliminate the periodicity, the inevitable characteristic frequency related to well‐defined cavity limits the improvement of chaotic performance. By virtue of the inherent randomness, disordered optical system can naturally avoid characteristic frequency and is deemed an ideal platform for generating self‐chaos. Here, the dynamical evolution process of self‐chaos in disordered optical system is observed, and self‐chaotic behavior can be flexibly manipulated by altering the interaction strength among random modes. Simultaneously, by adopting Erbium‐Raman hybrid gain, chaotic bandwidth can be synergistically enhanced to 38 GHz, which is successfully employed for higher‐speed true random bits generation and a scheme of local information encryption with higher‐quality. This work paves the way for investigating complex chaotic dynamics in disordered systems and showcases great potentialities within information security applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"27 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401402","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical chaos is an attractive topic due to its unique dynamics and has been widely investigated in external‐cavity lasers. While chaotic behavior is hindered by undesired periodicity from external feedback. Although a self‐chaotic micro‐laser based on nonlinear interaction of internal modes can eliminate the periodicity, the inevitable characteristic frequency related to well‐defined cavity limits the improvement of chaotic performance. By virtue of the inherent randomness, disordered optical system can naturally avoid characteristic frequency and is deemed an ideal platform for generating self‐chaos. Here, the dynamical evolution process of self‐chaos in disordered optical system is observed, and self‐chaotic behavior can be flexibly manipulated by altering the interaction strength among random modes. Simultaneously, by adopting Erbium‐Raman hybrid gain, chaotic bandwidth can be synergistically enhanced to 38 GHz, which is successfully employed for higher‐speed true random bits generation and a scheme of local information encryption with higher‐quality. This work paves the way for investigating complex chaotic dynamics in disordered systems and showcases great potentialities within information security applications.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.