{"title":"Suitability of large language models for extraction of high-quality chemical reaction dataset from patent literature","authors":"Sarveswara Rao Vangala, Sowmya Ramaswamy Krishnan, Navneet Bung, Dhandapani Nandagopal, Gomathi Ramasamy, Satyam Kumar, Sridharan Sankaran, Rajgopal Srinivasan, Arijit Roy","doi":"10.1186/s13321-024-00928-8","DOIUrl":null,"url":null,"abstract":"<div><p>With the advent of artificial intelligence (AI), it is now possible to design diverse and novel molecules from previously unexplored chemical space. However, a challenge for chemists is the synthesis of such molecules. Recently, there have been attempts to develop AI models for retrosynthesis prediction, which rely on the availability of a high-quality training dataset. In this work, we explore the suitability of large language models (LLMs) for extraction of high-quality chemical reaction data from patent documents. A comparative study on the same set of patents from an earlier study showed that the proposed automated approach can enhance the current datasets by addition of 26% new reactions. Several challenges were identified during reaction mining, and for some of them alternative solutions were proposed. A detailed analysis was also performed wherein several wrong entries were identified in the previously curated dataset. Reactions extracted using the proposed pipeline over a larger patent dataset can improve the accuracy and efficiency of synthesis prediction models in future.</p><p><b>Scientific contribution</b></p><p>In this work we evaluated the suitability of large language models for mining a high-quality chemical reaction dataset from patent literature. We showed that the proposed approach can significantly improve the quantity of the reaction database by identifying more chemical reactions and improve the quality of the reaction database by correcting previous errors/false positives.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00928-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00928-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the advent of artificial intelligence (AI), it is now possible to design diverse and novel molecules from previously unexplored chemical space. However, a challenge for chemists is the synthesis of such molecules. Recently, there have been attempts to develop AI models for retrosynthesis prediction, which rely on the availability of a high-quality training dataset. In this work, we explore the suitability of large language models (LLMs) for extraction of high-quality chemical reaction data from patent documents. A comparative study on the same set of patents from an earlier study showed that the proposed automated approach can enhance the current datasets by addition of 26% new reactions. Several challenges were identified during reaction mining, and for some of them alternative solutions were proposed. A detailed analysis was also performed wherein several wrong entries were identified in the previously curated dataset. Reactions extracted using the proposed pipeline over a larger patent dataset can improve the accuracy and efficiency of synthesis prediction models in future.
Scientific contribution
In this work we evaluated the suitability of large language models for mining a high-quality chemical reaction dataset from patent literature. We showed that the proposed approach can significantly improve the quantity of the reaction database by identifying more chemical reactions and improve the quality of the reaction database by correcting previous errors/false positives.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.