{"title":"Symmetrical Modular Optical Phased Array With Combined Spatial and Amplitude Modulation for Scalable Indoor Wireless Networks","authors":"Kosala Herath;Malin Premaratne;Sharadhi Gunathilake;Ampalavanapillai Nirmalathas","doi":"10.1109/OJCOMS.2024.3496866","DOIUrl":null,"url":null,"abstract":"Scalable optical wireless networks are crucial to address the demand for ultra-broadband wireless connectivity in future workspaces and living environments. This study presents a novel theoretical framework for the dual-carrier modular optical phased array (MOPA) architecture, specifically tailored for indoor wireless communication networks. We introduce the non-uniform spherical wave (NUSW) model for a near-field analysis of electromagnetic radiation in a single-carrier MOPA, extending this to dual-carrier configurations. Our analysis demonstrates enhanced beam-focusing capabilities and significant suppression of grating lobes in the dual-carrier system. Expanding on this theoretical model, we perform a comprehensive numerical analysis of a dual-carrier MOPA system installed on a planar ceiling within an indoor room. To quantitatively assess grating lobe suppression, we propose a novel figure-of-merit (FoM) and compare the beam-focusing performance of both single- and dual-carrier MOPA systems. Furthermore, we introduce a new symmetrical excitation mechanism combined with spatial modulation for data symbol encoding within the MOPA architecture. Our results reveal that this approach provides high-level physical layer security (PLS) for wireless communication. By integrating amplitude shift keying (ASK) with spatial modulation, we evaluate the bit error rate (BER) against signal-to-noise (SNR) ratio across different symmetrical excitation scenarios. This evaluation demonstrates that our system achieves efficient digital signal communication with reduced complexity and robust performance under real-world noise conditions. Our findings advance the understanding of optical phased array systems and underscore their potential for secure, high-performance indoor wireless communication.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7317-7340"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10752674","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10752674/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Scalable optical wireless networks are crucial to address the demand for ultra-broadband wireless connectivity in future workspaces and living environments. This study presents a novel theoretical framework for the dual-carrier modular optical phased array (MOPA) architecture, specifically tailored for indoor wireless communication networks. We introduce the non-uniform spherical wave (NUSW) model for a near-field analysis of electromagnetic radiation in a single-carrier MOPA, extending this to dual-carrier configurations. Our analysis demonstrates enhanced beam-focusing capabilities and significant suppression of grating lobes in the dual-carrier system. Expanding on this theoretical model, we perform a comprehensive numerical analysis of a dual-carrier MOPA system installed on a planar ceiling within an indoor room. To quantitatively assess grating lobe suppression, we propose a novel figure-of-merit (FoM) and compare the beam-focusing performance of both single- and dual-carrier MOPA systems. Furthermore, we introduce a new symmetrical excitation mechanism combined with spatial modulation for data symbol encoding within the MOPA architecture. Our results reveal that this approach provides high-level physical layer security (PLS) for wireless communication. By integrating amplitude shift keying (ASK) with spatial modulation, we evaluate the bit error rate (BER) against signal-to-noise (SNR) ratio across different symmetrical excitation scenarios. This evaluation demonstrates that our system achieves efficient digital signal communication with reduced complexity and robust performance under real-world noise conditions. Our findings advance the understanding of optical phased array systems and underscore their potential for secure, high-performance indoor wireless communication.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.