FRET Probes for Detection of Both Active and Inactive Zika Virus Protease.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-11-26 DOI:10.1021/acs.biochem.4c00415
Kristalle G Cruz, Kevin Alexander, Sparsh Makhaik, Jeanne A Hardy
{"title":"FRET Probes for Detection of Both Active and Inactive Zika Virus Protease.","authors":"Kristalle G Cruz, Kevin Alexander, Sparsh Makhaik, Jeanne A Hardy","doi":"10.1021/acs.biochem.4c00415","DOIUrl":null,"url":null,"abstract":"<p><p>Proteases are a privileged class of enzymes due to their catalysis of an irreversible post translational modification, namely cleavage of substrate proteins. Protease activity is essential for human pathways including inflammation, blood clotting, and apoptosis. Proteases are also essential for the propagation of many viruses due to their role in cleavage of the viral polyprotein. For these reasons, proteases are an attractive and highly exploited class of drug targets. To fully harness the power of proteases as drug targets, it is essential that their presence and function are detectable throughout the course of the protease lifetime, from inactive zymogen to the fully cleaved (mature) protease. A number of methods for detection of proteases have been developed, however, many rely on catalytic activity, so are not useful throughout the proteolytic life cycle. Here, we build on our observation that the MH1 family of benzofuran-aminothiazolopyridine inhibitors of Zika virus protease (ZVP) undergo a unique FRET interaction with tryptophan residues in the protease. The full FRET signal is only observed in higher potency binding interactions. Moreover, this approach can distinguish two inactive variants of ZVP based on their folded or unfolded state. These studies also probe the physicochemical basis of the FRET signal. Exploiting these types of FRET interactions may offer an orthogonal approach for detection of this protease, which takes advantage of the relationship between the novel ligand and the core of the protein and is therefore useful throughout the protease maturation cycle. Depending on chemical properties, this approach may be applicable in other proteases and other protein classes.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00415","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteases are a privileged class of enzymes due to their catalysis of an irreversible post translational modification, namely cleavage of substrate proteins. Protease activity is essential for human pathways including inflammation, blood clotting, and apoptosis. Proteases are also essential for the propagation of many viruses due to their role in cleavage of the viral polyprotein. For these reasons, proteases are an attractive and highly exploited class of drug targets. To fully harness the power of proteases as drug targets, it is essential that their presence and function are detectable throughout the course of the protease lifetime, from inactive zymogen to the fully cleaved (mature) protease. A number of methods for detection of proteases have been developed, however, many rely on catalytic activity, so are not useful throughout the proteolytic life cycle. Here, we build on our observation that the MH1 family of benzofuran-aminothiazolopyridine inhibitors of Zika virus protease (ZVP) undergo a unique FRET interaction with tryptophan residues in the protease. The full FRET signal is only observed in higher potency binding interactions. Moreover, this approach can distinguish two inactive variants of ZVP based on their folded or unfolded state. These studies also probe the physicochemical basis of the FRET signal. Exploiting these types of FRET interactions may offer an orthogonal approach for detection of this protease, which takes advantage of the relationship between the novel ligand and the core of the protein and is therefore useful throughout the protease maturation cycle. Depending on chemical properties, this approach may be applicable in other proteases and other protein classes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Determining the Electrostatic Contributions of GTPase-GEF Complexes on Interfacial Drug Binding Specificity: A Case Study of a Protein-Drug-Protein Complex. FRET Probes for Detection of Both Active and Inactive Zika Virus Protease. A Genetically Encoded Redox-Active Nicotinamide Amino Acid. Structural Analysis of Phosphonopyruvate Decarboxylase RhiEF: First Insights into an Ancestral Heterooligomeric Thiamine Pyrophosphate-Dependent Decarboxylase. New Insights into the Mechanism of Action of L-681,217, a Medicinally Promising Polyketide Inhibitor of Bacterial Protein Translation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1