Probability of Detection and Multi-Sensor Persistence of Methane Emissions from Coincident Airborne and Satellite Observations.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-11-25 DOI:10.1021/acs.est.4c06702
Alana K Ayasse, Daniel H Cusworth, Katherine Howell, Kelly O'Neill, Bradley M Conrad, Matthew R Johnson, Joseph Heckler, Gregory P Asner, Riley Duren
{"title":"Probability of Detection and Multi-Sensor Persistence of Methane Emissions from Coincident Airborne and Satellite Observations.","authors":"Alana K Ayasse, Daniel H Cusworth, Katherine Howell, Kelly O'Neill, Bradley M Conrad, Matthew R Johnson, Joseph Heckler, Gregory P Asner, Riley Duren","doi":"10.1021/acs.est.4c06702","DOIUrl":null,"url":null,"abstract":"<p><p>Satellites are becoming a widely used measurement tool for methane detection and quantification. The landscape of satellite instruments with some methane point-source quantification capabilities is growing. Combining information across available sensor platforms could be pivotal for understanding trends and uncertainties in source-level emissions. However, to effectively combine information across sensors of varying performance levels, the probability of detection (POD) for all instruments must be well characterized, which is time-consuming and costly, especially for satellites. In August 2023, we timed methane-sensing aerial surveys from the Global Airborne Observatory (GAO) to overlap with observations from the NASA Earth Surface Mineral Dust Source Investigation (EMIT). We show how these coincident observations can be used to determine and verify the detection limits of EMIT and to develop and test a multisensor persistence framework. Under favorable conditions, the 90% POD at 3 for EMIT is 1060. We further derive a Bayesian model to infer probabilistically whether nondetected emissions were truly off, and we validate and show how this model can be used to assess the intermittency of emissions with GAO and EMIT. Time-averaged emission rates from persistent sources can be underestimated if POD is not characterized and if differences in POD across multisensor frameworks are not properly accounted for.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06702","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Satellites are becoming a widely used measurement tool for methane detection and quantification. The landscape of satellite instruments with some methane point-source quantification capabilities is growing. Combining information across available sensor platforms could be pivotal for understanding trends and uncertainties in source-level emissions. However, to effectively combine information across sensors of varying performance levels, the probability of detection (POD) for all instruments must be well characterized, which is time-consuming and costly, especially for satellites. In August 2023, we timed methane-sensing aerial surveys from the Global Airborne Observatory (GAO) to overlap with observations from the NASA Earth Surface Mineral Dust Source Investigation (EMIT). We show how these coincident observations can be used to determine and verify the detection limits of EMIT and to develop and test a multisensor persistence framework. Under favorable conditions, the 90% POD at 3 for EMIT is 1060. We further derive a Bayesian model to infer probabilistically whether nondetected emissions were truly off, and we validate and show how this model can be used to assess the intermittency of emissions with GAO and EMIT. Time-averaged emission rates from persistent sources can be underestimated if POD is not characterized and if differences in POD across multisensor frameworks are not properly accounted for.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机载和卫星同步观测发现甲烷排放的概率和多传感器持久性。
卫星正成为甲烷探测和定量的一种广泛使用的测量工具。具有一定甲烷点源量化能力的卫星仪器正在不断增加。综合利用现有传感器平台的信息对于了解源级排放的趋势和不确定性至关重要。然而,要有效地将不同性能水平的传感器之间的信息结合起来,必须对所有仪器的探测概率(POD)进行充分描述,这既费时又费钱,尤其是对卫星而言。2023 年 8 月,我们将全球机载观测站(GAO)的甲烷传感空中勘测与美国国家航空航天局(NASA)的地球表面矿物尘源调查(EMIT)的观测进行了时间上的重叠。我们展示了如何利用这些重合观测来确定和验证 EMIT 的探测极限,以及如何开发和测试多传感器持久性框架。在有利条件下,EMIT 的 90% POD at 3 为 1060。我们进一步推导出一个贝叶斯模型,从概率上推断未检测到的排放是否真正关闭,我们还验证并展示了该模型如何用于评估 GAO 和 EMIT 的排放间歇性。如果未对 POD 进行描述,也未适当考虑多传感器框架之间 POD 的差异,则可能会低估持久源的时间平均排放率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Pyrogenic PAHs Have Different Biogeochemical Fates in the Eastern Indian Ocean Emulating Wildfire Plume Injection Using Machine Learning Trained by Large Eddy Simulation (LES) Lithium-Ion Battery Recycling: Bridging Regulation Implementation and Technological Innovations for Better Battery Sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1