Rinkesh K Gupta, Daniela Salgado Figueroa, Ferhat Ay, Benjamin Causton, Shahla Abdollahi, Michael Croft
{"title":"Comparison of CD30L and OX40L Reveals CD30L as a Promising Therapeutic Target in Atopic Dermatitis.","authors":"Rinkesh K Gupta, Daniela Salgado Figueroa, Ferhat Ay, Benjamin Causton, Shahla Abdollahi, Michael Croft","doi":"10.1111/all.16412","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Blocking IL-13 is highly efficacious in patients with Th2-biased atopic dermatitis (AD), and recent clinical data have highlighted that targeting the T cell costimulatory molecules OX40 and OX40L (TNFSF4) holds promise for future treatment of AD.</p><p><strong>Aim: </strong>We asked whether targeting another T cell costimulatory molecule, CD30L (TNFSF8), might also be a possible treatment option in AD.</p><p><strong>Methods: </strong>Single-cell RNA-seq data from human AD skin lesions was analyzed to identify pathogenic IL-13- or IL-22-producing T cells and assess expression of CD30 and its ligand in comparison to OX40 and its ligand. Additionally, a murine model of AD with repetitive exposure to house dust mite allergen was used to compare neutralizing antibodies against CD30L with those against IL-13 or OX40L.</p><p><strong>Results: </strong>Analysis of several scRNA-seq datasets from skin lesions of AD patients showed that transcripts for CD30 or CD30L were found expressed with OX40 or OX40L in the primary T cell populations that also expressed mRNA for IL13 and/or IL22. Suggesting that this could be therapeutically relevant, mice treated prophylactically with a blocking CD30L antibody were protected from developing maximal allergen-induced AD features, including epidermal and dermal thickening, immune cell infiltration, and expression of AD-related genes, similar to mice treated with a blocking IL-13 antibody. Moreover, therapeutic neutralization of CD30L in mice with experimental AD also reduced all of the pathological skin lesion features to a comparable extent as blocking OX40L.</p><p><strong>Conclusion: </strong>These data suggest that targeting the CD30-CD30L axis might hold promise as a future therapeutic intervention in human AD, similar to targeting the OX40-OX40L axis.</p>","PeriodicalId":122,"journal":{"name":"Allergy","volume":" ","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/all.16412","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Blocking IL-13 is highly efficacious in patients with Th2-biased atopic dermatitis (AD), and recent clinical data have highlighted that targeting the T cell costimulatory molecules OX40 and OX40L (TNFSF4) holds promise for future treatment of AD.
Aim: We asked whether targeting another T cell costimulatory molecule, CD30L (TNFSF8), might also be a possible treatment option in AD.
Methods: Single-cell RNA-seq data from human AD skin lesions was analyzed to identify pathogenic IL-13- or IL-22-producing T cells and assess expression of CD30 and its ligand in comparison to OX40 and its ligand. Additionally, a murine model of AD with repetitive exposure to house dust mite allergen was used to compare neutralizing antibodies against CD30L with those against IL-13 or OX40L.
Results: Analysis of several scRNA-seq datasets from skin lesions of AD patients showed that transcripts for CD30 or CD30L were found expressed with OX40 or OX40L in the primary T cell populations that also expressed mRNA for IL13 and/or IL22. Suggesting that this could be therapeutically relevant, mice treated prophylactically with a blocking CD30L antibody were protected from developing maximal allergen-induced AD features, including epidermal and dermal thickening, immune cell infiltration, and expression of AD-related genes, similar to mice treated with a blocking IL-13 antibody. Moreover, therapeutic neutralization of CD30L in mice with experimental AD also reduced all of the pathological skin lesion features to a comparable extent as blocking OX40L.
Conclusion: These data suggest that targeting the CD30-CD30L axis might hold promise as a future therapeutic intervention in human AD, similar to targeting the OX40-OX40L axis.
期刊介绍:
Allergy is an international and multidisciplinary journal that aims to advance, impact, and communicate all aspects of the discipline of Allergy/Immunology. It publishes original articles, reviews, position papers, guidelines, editorials, news and commentaries, letters to the editors, and correspondences. The journal accepts articles based on their scientific merit and quality.
Allergy seeks to maintain contact between basic and clinical Allergy/Immunology and encourages contributions from contributors and readers from all countries. In addition to its publication, Allergy also provides abstracting and indexing information. Some of the databases that include Allergy abstracts are Abstracts on Hygiene & Communicable Disease, Academic Search Alumni Edition, AgBiotech News & Information, AGRICOLA Database, Biological Abstracts, PubMed Dietary Supplement Subset, and Global Health, among others.