Verity Hartill, Mitra Kabir, Sunayna Best, Wasay Mohiuddin Shaikh Qureshi, Stephanie L Baross, Jenny Lord, Jing Yu, Erina Sasaki, Hazel Needham, Deborah Shears, Matthew Roche, Elizabeth Wall, Nicola Cooper, Gavin Ryan, Jacqueline Eason, Robert Johnson, Bernard Keavney, Kathryn E Hentges, Colin A Johnson
{"title":"Molecular diagnoses and candidate gene identification in the congenital heart disease cohorts of the 100,000 genomes project.","authors":"Verity Hartill, Mitra Kabir, Sunayna Best, Wasay Mohiuddin Shaikh Qureshi, Stephanie L Baross, Jenny Lord, Jing Yu, Erina Sasaki, Hazel Needham, Deborah Shears, Matthew Roche, Elizabeth Wall, Nicola Cooper, Gavin Ryan, Jacqueline Eason, Robert Johnson, Bernard Keavney, Kathryn E Hentges, Colin A Johnson","doi":"10.1038/s41431-024-01744-2","DOIUrl":null,"url":null,"abstract":"<p><p>Congenital heart disease (CHD) describes a structural cardiac defect present from birth. A cohort of participants recruited to the 100,000 Genomes Project (100 kGP) with syndromic CHD (286 probands) and familial CHD (262 probands) were identified. \"Tiering\" following genome sequencing data analysis prioritised variants in gene panels linked to participant phenotype. To improve diagnostic rates in the CHD cohorts, we implemented an agnostic de novo Gene Discovery Pipeline (GDP). We assessed de novo variants (DNV) for unsolved CHD participants following filtering to select variants of interest in OMIM-morbid genes, as well as novel candidate genes. The 100kGP CHD cohorts had low rates of pathogenic diagnoses reported (combined CHD \"solved\" 5.11% (n = 28/548)). Our GDP provided diagnostic uplift of nearly one third (1.28% uplift; 5.11% vs. 6.39%), with a new or potential diagnosis for 9 additional participants with CHD. When a filtered DNV occurred within a non-morbid gene, our GDP prioritised biologically-plausible candidate CHD genes (n = 79). Candidate variants occurred in both genes linked to cardiac development (e.g. AKAP13 and BCAR1) and those currently without a known role (e.g. TFAP2C and SETDB1). Sanger sequencing of a cohort of patients with CHD did not identify a second de novo variant in the candidate dataset. However, literature review identified rare variants in HMCN1, previously reported as causative for pulmonary atresia, confirming the approach utility. As well as diagnostic uplift for unsolved participants of the 100 kGP, our GDP created a dataset of candidate CHD genes, which forms an important resource for further evaluation.</p>","PeriodicalId":12016,"journal":{"name":"European Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41431-024-01744-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Congenital heart disease (CHD) describes a structural cardiac defect present from birth. A cohort of participants recruited to the 100,000 Genomes Project (100 kGP) with syndromic CHD (286 probands) and familial CHD (262 probands) were identified. "Tiering" following genome sequencing data analysis prioritised variants in gene panels linked to participant phenotype. To improve diagnostic rates in the CHD cohorts, we implemented an agnostic de novo Gene Discovery Pipeline (GDP). We assessed de novo variants (DNV) for unsolved CHD participants following filtering to select variants of interest in OMIM-morbid genes, as well as novel candidate genes. The 100kGP CHD cohorts had low rates of pathogenic diagnoses reported (combined CHD "solved" 5.11% (n = 28/548)). Our GDP provided diagnostic uplift of nearly one third (1.28% uplift; 5.11% vs. 6.39%), with a new or potential diagnosis for 9 additional participants with CHD. When a filtered DNV occurred within a non-morbid gene, our GDP prioritised biologically-plausible candidate CHD genes (n = 79). Candidate variants occurred in both genes linked to cardiac development (e.g. AKAP13 and BCAR1) and those currently without a known role (e.g. TFAP2C and SETDB1). Sanger sequencing of a cohort of patients with CHD did not identify a second de novo variant in the candidate dataset. However, literature review identified rare variants in HMCN1, previously reported as causative for pulmonary atresia, confirming the approach utility. As well as diagnostic uplift for unsolved participants of the 100 kGP, our GDP created a dataset of candidate CHD genes, which forms an important resource for further evaluation.
期刊介绍:
The European Journal of Human Genetics is the official journal of the European Society of Human Genetics, publishing high-quality, original research papers, short reports and reviews in the rapidly expanding field of human genetics and genomics. It covers molecular, clinical and cytogenetics, interfacing between advanced biomedical research and the clinician, and bridging the great diversity of facilities, resources and viewpoints in the genetics community.
Key areas include:
-Monogenic and multifactorial disorders
-Development and malformation
-Hereditary cancer
-Medical Genomics
-Gene mapping and functional studies
-Genotype-phenotype correlations
-Genetic variation and genome diversity
-Statistical and computational genetics
-Bioinformatics
-Advances in diagnostics
-Therapy and prevention
-Animal models
-Genetic services
-Community genetics